Chin. Phys. Lett.  2015, Vol. 32 Issue (09): 090301    DOI: 10.1088/0256-307X/32/9/090301
Quantum Illumination with Noiseless Linear Amplifier
ZHANG Sheng-Li, WANG-Kun**, GUO Jian-Sheng, SHI Jian-Hong
The PLA Information Engineering University, Zhengzhou 450004
Cite this article:   
ZHANG Sheng-Li, WANG-Kun, GUO Jian-Sheng et al  2015 Chin. Phys. Lett. 32 090301
Download: PDF(602KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Quantum illumination, that is, quantum target detection, is to detect the potential target with two-mode quantum entangled state. For a given transmitted energy, the quantum illumination can achieve a target-detection probability of error much lower than the illumination scheme without entanglement. We investigate the usefulness of noiseless linear amplification (NLA) for quantum illumination. Our result shows that NLA can help to substantially reduce the number of quantum entangled states collected for joint measurement of multi-copy quantum state. Our analysis on the NLA-assisted scheme could help to develop more efficient schemes for quantum illumination.
Received: 27 March 2015      Published: 02 October 2015
PACS:  03.67.Bg (Entanglement production and manipulation)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
  03.67.Hk (Quantum communication)  
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
ZHANG Sheng-Li
GUO Jian-Sheng
SHI Jian-Hong
[1] Lloyd S 2008 Science 321 1463
[2] Shapiro J H and Lloyd S 2009 New J. Phys. 11 063045
[3] Tan S H, Erkmen B I, Giovannetti V, Guha S, Lloyd S, Maccone L, Pirandola S and Shapiro J H 2008 Phys. Rev. Lett. 101 253601
[4] Guha S and Erkmen B I 2009 Phys. Rev. A 80 052310
[5] Shapiro J H 2009 Phys. Rev. A 80 022320
[6] Zhang S L, Guo J S, Bao W S, Shi J H, Jin C H, Zou X B and Guo G C 2014 Phys. Rev. A 89 062309
[7] Weedbrook C, Pirandola S, Thompson J, Vedral V and Gu M 2013 arXiv:1312.3332
[8] Ragy S, Berchera I R, Degiovanni I P, Olivares S, Paris M G A, Adesso G and Genovese M 2014 J. Opt. Soc. Am. B 31 2045
[9] Lopaeva E D, Berchera I R, Degiovanni, Olivares S, Brida G and Genovese M 2013 Phys. Rev. Lett. 110 153603
[10] Ralph T C and Lund A P 2009 Quantum Communication Measurement and Computing Proceedings of 9th International Conference (New York: AIP) p 155
[11] Ralph T C 2011 Phys. Rev. A 84 022339
[12] Zhang S L, Yang S, Zou X B, Shi B S and Guo G C 2012 Phys. Rev. A 86 034302
[13] Brask J B, Brunner N, Cavalcanti D and Leverrier A 2012 Phys. Rev. A 85 042116
[14] Takahashi H, Neergaard-Nielsen J S, Takeuchi M, Takeoka M, Hayasaka K, Furusawa A and Sasaki M 2010 Nat. Photon. 4 178
[15] Zavatta A, Parigi V and Bellini M 2007 Phys. Rev. A 75 052106
[16] Parigi V, Zavatta A, Kim M and Bellini M 2007 Science 317 1890
[17] Zavatta A, Viciani S and Bellini M 2004 Science 306 660
[18] Zavatta A, Viciani S and Bellini M 2005 Phys. Rev. A 72 023820
[19] Sacchi M F 2005 Phys. Rev. A 71 062340
[20] Sacchi M F 2005 Phys. Rev. A 72 014305
[21] Zhang S L and Loock P 2011 Phys. Rev. A 84 062309
[22] Yang S, Zhang S L, Zou X B, Bi S W and Lin X L 2013 Phys. Rev. A 87 024302
Related articles from Frontiers Journals
[1] Sheng-Li Zhang, Chen-Hui Jin, Jian-Hong Shi , Jian-Sheng Guo, Xu-Bo Zou, Guang-Can Guo. Continuous Variable Quantum Teleportation in Beam-Wandering Modeled Atmosphere Channel[J]. Chin. Phys. Lett., 2017, 34(4): 090301
[2] Sheng-Li Zhang, Jian-Sheng Guo, Jian-Hong Shi, Xu-Bo Zou. Distillation of Atmospherically Disturbed Continuous Variable Quantum Entanglement with Photon Subtraction[J]. Chin. Phys. Lett., 2016, 33(07): 090301
[3] GAN Shu, HE Xing-Dao, LIU Bin, FENG Cui-Di. Effect of Quantum Coins on Two-Particle Quantum Walks[J]. Chin. Phys. Lett., 2015, 32(08): 090301
[4] LI Xin, LI Zhong-Fang, SHI Zhi-Long, WANG Xiao-Qin. Characteristics of Entanglement Wave in Two Parallel Spin Chains[J]. Chin. Phys. Lett., 2014, 31(06): 090301
[5] SHANG Ru-Nan, LI Hai-Ou, CAO Gang, YU Guo-Dong, XIAO Ming, TU Tao, GUO Guo-Ping. Probing Energy Spectrum of Quadruple Quantum Dots with Microwave Field[J]. Chin. Phys. Lett., 2014, 31(05): 090301
[6] ZHAO Jie, LI Wen-Dong, GU Yong-Jian. Deterministic Three-Copy Entanglement Concentration of Photons through Direct Sum Extension and Auxiliary Degrees of Freedom[J]. Chin. Phys. Lett., 2013, 30(7): 090301
[7] ZHAO Jun-Jun, GUO Xiao-Min, WANG Xu-Yang, WANG Ning, LI Yong-Min, PENG Kun-Chi . Continuous Variable Entanglement Distribution for Long-Distance Quantum Communication[J]. Chin. Phys. Lett., 2013, 30(6): 090301
[8] ZHANG Dan, ZHENG Qiang. Effect of Phase Noise on the Stationary Entanglement of an Optomechanical System with Kerr Medium[J]. Chin. Phys. Lett., 2013, 30(2): 090301
[9] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 090301
[10] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 090301
[11] YU You-Bin**, WANG Huai-Jun, FENG Jin-Xia . Generation of Enhanced Three-Mode Continuously Variable Entanglement[J]. Chin. Phys. Lett., 2011, 28(9): 090301
[12] Salman Khan**, M. Khalid Khan . Quantum Stackelberg Duopoly in a Noninertial Frame[J]. Chin. Phys. Lett., 2011, 28(7): 090301
[13] LIAO Qing-Hong, FANG Guang-Yu, WANG Ji-Cheng, AHMAD Muhammad Ashfaq, LIU Shu-Tian** . Control of the Entanglement between Two Josephson Charge Qubits[J]. Chin. Phys. Lett., 2011, 28(6): 090301
[14] ZHANG Miao, JIA Huan-Yu, WEI Lian-Fu, ** . Entangling a Series of Trapped Ions by Moving Cavity Bus[J]. Chin. Phys. Lett., 2011, 28(6): 090301
[15] ZHU Zhi-Cheng, TU Tao**, GUO Guo-Ping . Multipartite Spin Entangled States in Quantum Dots with a Quantum Databus Based on Nano Electro-Mechanical Resonator[J]. Chin. Phys. Lett., 2011, 28(4): 090301
Full text