Chin. Phys. Lett.  2015, Vol. 32 Issue (08): 086201    DOI: 10.1088/0256-307X/32/8/086201
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Properties of Liquid Nickel along Melting Lines under High Pressure
CAO Qi-Long1**, WANG Pan-Pan2, HUANG Duo-Hui1, YANG Jun-Sheng1, WAN Ming-Jie1, WANG Fan-Hou1
1Key Laboratory of Computational Physics, Yibin University, Yibin 644007
2Management Centre for Experimental and Teaching Resource, Yibin University, Yibin 644007
Cite this article:   
CAO Qi-Long, WANG Pan-Pan, HUANG Duo-Hui et al  2015 Chin. Phys. Lett. 32 086201
Download: PDF(655KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report a molecular dynamics study of structural and transport properties of liquid nickel under high pressures. Pressure dependencies of pair distribution function and pair correlation entropy along the melting line indicate that the configuration change along melting lines decreases with increasing pressure. The calculated diffusion coefficients and viscosity by using entropy-scaling laws with modified parameters and ideal parameters are compared with those extracted from mean-square displacement or the Stokes–Einstein relation. The results suggest that the entropy-scaling laws hold well for liquid nickel under high-pressure conditions, and the diffusion coefficients and viscosity increase moderately with pressure along melting lines.
Received: 17 December 2014      Published: 02 September 2015
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  65.40.gd (Entropy)  
  66.20.-d (Viscosity of liquids; diffusive momentum transport)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/8/086201       OR      https://cpl.iphy.ac.cn/Y2015/V32/I08/086201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAO Qi-Long
WANG Pan-Pan
HUANG Duo-Hui
YANG Jun-Sheng
WAN Ming-Jie
WANG Fan-Hou
[1] Jeanloz R 1990 Annu. Rev. Earth Planet. Sci. 18 357
[2] Dubrovinsky L et al 2007 Science 316 1880
[3] Inoue A 2000 Acta Mater. 48 279
[4] Bharathi K K, Vemuri R S and Ramana C V 2011 Chem. Phys. Lett. 504 202
[5] Jakse N and Pasturel A 2004 J. Chem. Phys. 120 6124
[6] Jakse N, Wax J F and Pasturel A 2007 J. Chem. Phys. 126 234508
[7] Kim T H and Kelton K F 2007 J. Chem. Phys. 126 054513
[8] Brandes E A and Brook G B 1992 Smithells Metals Reference Book 7th edn (Oxford: Butterworth-Heinemann)
[9] Chathoth S M, Meyer A, Koza M M and Juranyi F 2004 Appl. Phys. Lett. 85 4881
[10] Japel S, Schwager B, Boehler R and Ross M 2005 Phys. Rev. Lett. 95 167801
[11] Ross M, Boehler R and Errandonea D 2007 Phys. Rev. B 76 184117
[12] Pozzo M and Alfè D 2013 Phys. Rev. B 88 024111
[13] Errandonea D 2013 Phys. Rev. B 87 054108
[14] Ko?i L, Bringa E M, Ivanov D S, Hawreliak J, McNaney J, Higginbotham A, Zhigilei L V, Belonoshko A B, Remington B A and Ahuja R 2006 Phys. Rev. B 74 012101
[15] Luo F, Chen X R, Cai L C and Ji G F 2010 J. Chem. Eng. Data 55 5149
[16] Urlin V D 1966 Sov. Phys. JETP 22 341
[17] Cao Q L, Wang P P, Huang D H, Yang J S, Wan M J and Wang F H 2014 J. Chem. Phys. 140 114505
[18] Cao Q L, Huang D H, Yang J S, Wan M J and Wang F H 2014 Chin. Phys. Lett. 31 066202
[19] Alfè D 2003 Phys. Rev. B 68 064423
[20] Plimpton S 1995 J. Comput. Phys. 117 1
[21] Chakraborty S N and Chakravarty C 2007 Phys. Rev. E 76 011201
[22] Yokoyama I 1998 Physica B 254 172
[23] Cao Q L, Wang W L, Li Y D and Liu C S 2011 J. Chem. Phys. 134 044508
[24] Rosenfeld Y 1977 Phys. Rev. A 15 2545
[25] Rosenfeld Y 1999 J. Phys.: Condens. Matter 11 5415
[26] Hoyt J J, Asta M and Sadigh B 2000 Phys. Rev. Lett. 85 594
[27] Li G X, Liu C S and Zhu Z G 2005 Phys. Rev. B 71 094209
[28] Cao Q L, Kong X S, Li Y D, Wu X B and Liu C S 2011 Physica B 406 3114
[29] Dobson D P 2002 Phys. Earth Planet. Interiors 130 271
[30] Alfè D, Kresse G and Gillan M J 2000 Phys. Rev. B 61 132
[31] Dai J Y, Hou Y, Kang D D, Sun H Y, Wu J H and Yuan J M 2013 New J. Phys. 15 045003
[32] Shen G, Prakapenka V B, Rivers M L and Sutton S R 2004 Phys. Rev. Lett. 92 185701
Related articles from Frontiers Journals
[1] Linchao Yu, Song Huang, Xiangzhuo Xing, Xiaolei Yi, Yan Meng, Nan Zhou, Zhixiang Shi, and Xiaobing Liu. Critical Current Density, Vortex Pinning, and Phase Diagram in the NaCl-Type Superconductors InTe$_{1- x}$Se$_{x}$ ($x = 0$, 0.1, 0.2)[J]. Chin. Phys. Lett., 2023, 40(3): 086201
[2] Xue Ming, Chengping He, Xiyu Zhu, Huiyang Gou, and Hai-Hu Wen. Growth and Characterization of a New Superconductor GaBa$_{2}$Ca$_{3}$Cu$_{4}$O$_{11+\delta}$[J]. Chin. Phys. Lett., 2023, 40(1): 086201
[3] Caizi Zhang, Fangfei Li, Xinmiao Wei, Mengqi Guo, Yingzhan Wei, Liang Li, Xinyang Li, and Qiang Zhou. Abnormal Elastic Changes for Cubic-Tetragonal Transition of Single-Crystal SrTiO$_{3}$[J]. Chin. Phys. Lett., 2022, 39(9): 086201
[4] Yan Wang, Mingguang Yao, Xing Hua, Fei Jin, Zhen Yao, Hua Yang, Ziyang Liu, Quanjun Li, Ran Liu, Bo Liu, Linhai Jiang, and Bingbing Liu. Structural Evolution of $D_{5h}$(1)-C$_{90}$ under High Pressure: A Mediate Allotrope of Nanocarbon from Zero-Dimensional Fullerene to One-Dimensional Nanotube[J]. Chin. Phys. Lett., 2022, 39(5): 086201
[5] Jun-Yi Miao, Zhan-Sheng Lu, Feng Peng, and Cheng Lu. New Members of High-Energy-Density Compounds: YN$_{5}$ and YN$_{8}$[J]. Chin. Phys. Lett., 2021, 38(6): 086201
[6] Yun-Xian Liu , Chao Wang, Shuai Han , Xin Chen , Hai-Rui Sun , and Xiao-Bing Liu. Novel Superconducting Electrides in Ca–S System under High Pressures[J]. Chin. Phys. Lett., 2021, 38(3): 086201
[7] Fang Hong, Liuxiang Yang, Pengfei Shan, Pengtao Yang, Ziyi Liu, Jianping Sun, Yunyu Yin, Xiaohui Yu, Jinguang Cheng, and Zhongxian Zhao. Superconductivity of Lanthanum Superhydride Investigated Using the Standard Four-Probe Configuration under High Pressures[J]. Chin. Phys. Lett., 2020, 37(10): 086201
[8] Yu-Chen Shang, Fang-Ren Shen, Xu-Yuan Hou, Lu-Yao Chen, Kuo Hu, Xin Li, Ran Liu, Qiang Tao, Pin-Wen Zhu, Zhao-Dong Liu, Ming-Guang Yao, Qiang Zhou, Tian Cui, and Bing-Bing Liu. Pressure Generation above 35 GPa in a Walker-Type Large-Volume Press[J]. Chin. Phys. Lett., 2020, 37(8): 086201
[9] Qi-Long Cao, Duo-Hui Huang , Jun-Sheng Yang , and Fan-Hou Wang . Pressure Effects on the Transport and Structural Properties of Metallic Glass-Forming Liquid[J]. Chin. Phys. Lett., 2020, 37(7): 086201
[10] Jie-Min Xu, Shu-Yang Wang, Wen-Jun Wang, Yong-Hui Zhou, Xu-Liang Chen, Zhao-Rong Yang, and Zhe Qu. Possible Tricritical Behavior and Anomalous Lattice Softening in van der Waals Itinerant Ferromagnet Fe$_{3}$GeTe$_{2}$ under High Pressure[J]. Chin. Phys. Lett., 2020, 37(7): 086201
[11] Jingyan Song, Shuai Duan, Xin Chen, Xiangjun Li , Bingchao Yang , and Xiaobing Liu. Synthesis of Highly Stable One-Dimensional Black Phosphorus/h-BN Heterostructures: A Novel Flexible Electronic Platform[J]. Chin. Phys. Lett., 2020, 37(7): 086201
[12] Jiayu Wang , Qiang Zhou , Siyang Guo , Yanping Huang , Xiaoli Huang , Lu Wang, Fangfei Li, Tian Cui . Velocity and Stability of Condensed Polymorphic SiH$_{4}$: A High-Temperature High-Pressure Brillouin Investigation[J]. Chin. Phys. Lett., 2020, 37(6): 086201
[13] Lei Gao, Qiulin Liu, Jiawei Yang, Yue Wu, Zhehong Liu, Shijun Qin, Xubin Ye, Shifeng Jin, Guodong Li, Huaizhou Zhao, Youwen Long. High-Pressure Synthesis and Thermal Transport Properties of Polycrystalline BAs$_{x}$[J]. Chin. Phys. Lett., 2020, 37(6): 086201
[14] Jiayu Wang , Qiang Zhou , Siyang Guo , Yanping Huang , Xiaoli Huang , Lu Wang, Fangfei Li, Tian Cui . Velocity and Stability of Condensed Polymorphic SiH$_{4}$: A High-Temperature High-Pressure Brillouin Investigation *[J]. Chin. Phys. Lett., 0, (): 086201
[15] Xiao-Yu Zhao, Jun-Hui Huang, Zhi-Yao Zhuo, Yong-Zhou Xue, Kun Ding, Xiu-Ming Dou, Jian Liu, Bao-Quan Sun. Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure[J]. Chin. Phys. Lett., 2020, 37(4): 086201
Viewed
Full text


Abstract