Chin. Phys. Lett.  2015, Vol. 32 Issue (06): 067502    DOI: 10.1088/0256-307X/32/6/067502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Magnetization Reversal Process of Single Crystal α-Fe Containing a Nonmagnetic Particle
LI Yi1,3, XU Ben1, HU Shen-Yang2, LI Yu-Lan2, LI Qiu-Lin1,3, LIU Wei1,3**
1School of Material Science and Engineering, Tsinghua University, Beijing 100084
2Pacific Northwest National Laboratory, Richland 99352, USA
3Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055
Cite this article:   
LI Yi, XU Ben, HU Shen-Yang et al  2015 Chin. Phys. Lett. 32 067502
Download: PDF(939KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The magnetization reversal process and hysteresis loops in a single crystal α-iron with nonmagnetic particles are simulated in this work based on the Landau–Lifshitz–Gilbert equation. The evolutions of the magnetic domain morphology are studied, and our analyses show that the magnetization reversal process is affected by the interaction between the moving domain wall and the existing nonmagnetic particles. This interaction strongly depends on the size of the particles, and it is found that particles with a particular size contribute the most to magnetic hardening.
Received: 12 January 2015      Published: 30 June 2015
PACS:  75.78.Cd (Micromagnetic simulations ?)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
  75.60.Ch (Domain walls and domain structure)  
  75.30.Hx (Magnetic impurity interactions)  
  75.50.Bb (Fe and its alloys)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/6/067502       OR      https://cpl.iphy.ac.cn/Y2015/V32/I06/067502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Yi
XU Ben
HU Shen-Yang
LI Yu-Lan
LI Qiu-Lin
LIU Wei
[1] Lucas G E 2010 J. Nucl. Mater. 407 59
[2] Miller M K and Russell K F 2007 J. Nucl. Mater. 371 145
[3] Nagai Y, Takadate K, Tang Z, Ohkubo H, Sunaga H, Takizawa H and Hasegawa M 2003 Phys. Rev. B 67 224202
[4] Matijasevic M and Almazouzi A 2008 J. Nucl. Mater. 377 147
[5] Konobeev Y V, Dvoriashin A M, Porollo S I and Garner F A 2006 J. Nucl. Mater. 355 124
[6] Porollo S I, Dvoriashin A M, Vorobyev A N and Konobeev Y V 1998 J. Nucl. Mater. 256 247
[7] Kempf R A, Sacanell J, Milano J, Guerra M éndez N, Winkler E, Butera A, Troiani H, Saleta M E, Fortis A M et al 2014 J. Nucl. Mater. 445 57
[8] Barroso P S, Horváth M and Horváth á 2010 Nucl. Eng. Des. 240 722
[9] Mohapatra J N, Kamada Y, Kikuchi H, Kobayashi S, Echigoya J, Park D G and Cheong Y M 2011 J. Phys.: Conf. Ser. 266 012041
[10] Mohapatra J N, Kamada Y, Kikuchi H, Kobayashi S, Echigoya J, Park D G and Cheong Y M 2011 IEEE Trans. Magn. 47 4356
[11] Vandenbossche L, Konstantinovi? M J and Dupré L 2008 J. Magn. Magn. Mater. 320 e562
[12] Park D G, Park S S, Ju J S, Chang K O and Hong J H 2004 J. Magn. Magn. Mater. 272 1512
[13] Park D G, Park I G, Kim W W, Cheong Y M and Hong J H 2008 Nucl. Eng. Des. 238 814
[14] Gilbert T L 2004 IEEE Trans. Magn. 40 3443
[15] Zhang J X and Chen L Q 2005 Acta Mater. 53 2845
[16] Hu S Y, Li Y L, McCloy J, Montgomery R and Henager Jr C 2013 IEEE Magn. Lett. 4 3500104
[17] Jang Y, Bowden S R, Mascaro M, Unguris J and Ross C A 2012 Appl. Phys. Lett. 100 062407
[18] Dean J, Kohn, A, Kovacs A, Zeltser A, Carey M J, Hrkac G, Allwood D A and Schrefl T 2011 J. Appl. Phys. 110 073901
[19] Cullity B D and Graham C D 2009 Introduction to Magnetic Materials 2nd edn (Birlin: Wiley-IEEE Press) p 306
Related articles from Frontiers Journals
[1] Zhiwen Wang, Jinghua Liang, and Hongxin Yang. Strain-Enabled Control of Chiral Magnetic Structures in MnSeTe Monolayer[J]. Chin. Phys. Lett., 2023, 40(1): 067502
[2] Jiahao Liu, Zidong Wang, Teng Xu, Hengan Zhou, Le Zhao, Soong-Guen Je, Mi-Young Im, Liang Fang, and Wanjun Jiang. The 20-nm Skyrmion Generated at Room Temperature by Spin-Orbit Torques[J]. Chin. Phys. Lett., 2022, 39(1): 067502
[3] Xiao-Ping Ma, Hongguo Yang, Changfeng Li, Cheng Song, and Hong-Guang Piao. Nanocavity-Mediated Fast Magnetic Vortex Core In-Situ Switching by Local Magnetic Field[J]. Chin. Phys. Lett., 2021, 38(12): 067502
[4] Qingwei Fu, Yong Li, Lina Chen, Fusheng Ma, Haotian Li, Yongbing Xu, Bo Liu, Ronghua Liu, and Youwei Du. Mode Structures and Damping of Quantized Spin Waves in Ferromagnetic Nanowires[J]. Chin. Phys. Lett., 2020, 37(8): 067502
[5] Jing-Yue Miao. Machine Learning and Micromagnetic Studies of Magnetization Switching[J]. Chin. Phys. Lett., 2019, 36(9): 067502
[6] Guang-Tian Hai, Wen-Xiu Zhao, Jia-Shu Chen, Zheng-Hua Li, Jia-Liang He. Magnetoresistance Detection of Vortex Domain in a Notched FeNi Nanowire[J]. Chin. Phys. Lett., 2018, 35(7): 067502
[7] Jiang-Nan Li, Dan Wei,. Periodic Boundary Conditions for Finite-Differentiation-Method Fast-Fourier-Transform Micromagnetics[J]. Chin. Phys. Lett., 2017, 34(4): 067502
[8] Long-Ze Wang, Jiang-Nan Li, Jun-Jie Song, Chuan Liu, Dan Wei. Simulation of $M$–$H$ Loops in FeCo Polycrystalline Thin Films at Finite Temperatures[J]. Chin. Phys. Lett., 2017, 34(4): 067502
[9] Long-Ze Wang, Jing-Yue Miao, Zhen Zhao, Chuan Liu, Dan Wei. Micromagnetic Studies of Finite Temperature $M$–$H$ Loops for FePt-C Media[J]. Chin. Phys. Lett., 2017, 34(2): 067502
[10] CHENG Zhi-Da, ZHU Jing, **, TANG Zheng . Noncollinear Magnetism Calculation of Iron Clusters with Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2011, 28(3): 067502
Viewed
Full text


Abstract