Chin. Phys. Lett.  2015, Vol. 32 Issue (10): 107101    DOI: 10.1088/0256-307X/32/10/107101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Observation of Fermi Arcs in Non-Centrosymmetric Weyl Semi-Metal Candidate NbP
XU Di-Fei1,2, DU Yong-Ping3, WANG Zhen4,5, LI Yu-Peng4,5, NIU Xiao-Hai1,2, YAO Qi1,2, Dudin Pavel6, XU Zhu-An4,5,7,8, WAN Xian-Gang3**, FENG Dong-Lai1,2**
1State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433
2Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433
3National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and College of Physics, Nanjing University, Nanjing 210093
4Department of Physics, Zhejiang University, Hangzhou 310027
5State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027
6Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
7Zhejiang California International NanoSystems Institute, Zhejiang University, Hangzhou 310027
8Collaborative Innovation Centre of Advanced Microstructures, Nanjing 210093
Download: PDF(2410KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We report the surface electronic structure of niobium phosphide NbP single crystal on (001) surface by vacuum ultraviolet angle-resolved photoemission spectroscopy. Combining with our first principle calculations, we identify the existence of the Fermi arcs originated from topological surface states. Furthermore, the surface states exhibit circular dichroism pattern, which may correlate with its non-trivial spin texture. Our results provide critical evidence for the existence of the Weyl Fermions in NbP, which lays the foundation for further research.

Received: 10 September 2015      Published: 30 October 2015
PACS:  71.55.Ak (Metals, semimetals, and alloys)  
  74.20.Pq (Electronic structure calculations)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  79.60.-i (Photoemission and photoelectron spectra)  
TRENDMD:   
Cite this article:   
XU Di-Fei, DU Yong-Ping, WANG Zhen et al  2015 Chin. Phys. Lett. 32 107101
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/32/10/107101       OR      http://cpl.iphy.ac.cn/Y2015/V32/I10/107101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Di-Fei
DU Yong-Ping
WANG Zhen
LI Yu-Peng
NIU Xiao-Hai
YAO Qi
Dudin Pavel
XU Zhu-An
WAN Xian-Gang
FENG Dong-Lai

[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[3] Balents L 2011 Physics 4 36
[4] Wan X G, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101
[5] Xu G, Weng H M, Wang Z J and X Dai 2011 Phys. Rev. Lett. 107 186806
[6] Turner A M and Vishwanath A 2013 arXiv:1301.0330[cond-mat.str-el]
[7] Vafek O and Vishwanath A 2014 Annu. Rev. Condens. Matter Phys. 5 83
[8] Weyl H 1929 Z. Phys. 56 330
[9] Hosur P 2012 Phys. Rev. B 86 195102
[10] Zyuzin A A and Burkov A A 2012 Phys. Rev. B 86 115133
[11] Liu C X, Ye P and Qi X L 2013 Phys. Rev. B 87 235306
[12] Parameswaran S A 2014 Phys. Rev. X 4 031035
[13] Landsteiner K 2014 Phys. Rev. B 89 075124
[14] Potter A C, Kimchi I and Vishwanath A 2014 Nat. Commun. 5 5161
[15] Wang Z J et al 2012 Phys. Rev. B 85 195320
[16] Liu Z K et al 2014 Science 343 864
[17] Xu S Y et al 2015 Science 347 294
[18] Wang Z J et al 2013 Phys. Rev. B 88 125427
[19] Liu Z K et al 2014 Nat. Mater. 13 677
[20] Neupane M et al 2014 Nat. Commun. 5 3786
[21] Borisenko S et al 2014 Phys. Rev. Lett. 113 027603
[22] Yang B J et al 2014 Nat. Commun. 5 4898
[23] Young S M et al 2012 Phys. Rev. Lett. 108 140405
[24] Weng H M et al 2015 Phys. Rev. X 5 011029
[25] Huang S M et al 2015 Nat. Commun. 6 7373
[26] Xu S Y et al 2015 Science 349 613
[27] Lv B Q et al 2015 Phys. Rev. X 5 031013
[28] Lv B Q et al 2015 Nat. Phys. 11 724
[29] Yang L X et al 2015 Nat. Phys. 11 728
[30] Xu S Y et al 2015 Nat. Phys. 11 748
[31] Xu N et al 2015 arXiv:1507.03983[cond-mat.mtrl-sci]
[32] Xu S -Y et al 2015 arXiv:1508.03102[cond-mat.mes-hall]
[33] Wang Z et al 2015 arXiv:1506.00924[cond-mat.mes-hall]
[34] Shekhar C et al 2015 Nat. Phys. 11 645
[35] Liang T et al 2014 Nat. Mater. 14 280
[36] Ali M N et al 2015 Nature 514 205
[37] Kresse G and Hafner J 1993 Phys. Rev. B 47 558(R)
[38] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[39] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[40] Koelling D D and Harmon B N 1977 J. Phys. C: Solid State Phys. 10 3107
[41] Park S R et al 2012 Phys. Rev. Lett. 108 046805
[42] Wang Y H et al 2011 Phys. Rev. Lett. 107 207602

Related articles from Frontiers Journals
[1] Fei Sun, M. Yang, M. W. Yang, Q. Wu, H. Zhao, X. Ye, Youguo Shi, Jimin Zhao. Coherent Acoustic Phonon and Its Chirping in Dirac Semimetal Cd$_{3}$As$_{2}$[J]. Chin. Phys. Lett., 2018, 35(11): 107101
[2] Moran Gao, Junbao He, Wenliang Zhu, Shuai Zhang, Xinmin Wang, Jing Li, Chaoyang Ma, Hui Liang, Zhian Ren, Genfu Chen. Magnetotransport Properties of a Nodal Line Semimetal TiSi[J]. Chin. Phys. Lett., 2018, 35(11): 107101
[3] Ji-Xiang Gong, Jun Yang, Min Ge, Yong-Jian Wang, Dan-Dan Liang, Lei Luo, Xiu Yan, Wei-Li Zhen, Shi-Rui Weng, Li Pi, Chang-Jin Zhang, Wen-Ka Zhu. Non-Stoichiometry Effects on the Extreme Magnetoresistance in Weyl Semimetal WTe$_{2}$[J]. Chin. Phys. Lett., 2018, 35(9): 107101
[4] Wei Cheng, Yan-Long Fu, Min-Ju Ying, Feng-Shou Zhang. Electronic Properties of Defects Induced by H Irradiation in Tantalum Phosphide[J]. Chin. Phys. Lett., 2017, 34(12): 107101
[5] Jian-Peng Sun. Topological Nodal Line Semimetal in Non-Centrosymmetric PbTaS$_2$[J]. Chin. Phys. Lett., 2017, 34(7): 107101
[6] Jin-Lian Lu, Wei Luo, Xue-Yang Li, Sheng-Qi Yang, Jue-Xian Cao, Xin-Gao Gong, Hong-Jun Xiang. Two-Dimensional Node-Line Semimetals in a Honeycomb-Kagome Lattice[J]. Chin. Phys. Lett., 2017, 34(5): 107101
[7] ZHANG Jun, LIU Feng-Liang, DONG Jin-Kui, XU Yang, LI Na-Na, YANG Wen-Ge, LI Shi-Yan. Structural and Transport Properties of the Weyl Semimetal NbAs at High Pressure[J]. Chin. Phys. Lett., 2015, 32(09): 107101
[8] RAO Jian-Ping, OUYANG Chu-Ying**, LEI Min-Sheng, JIANG Feng-Yi . Vacancy and H Interactions in Nb[J]. Chin. Phys. Lett., 2011, 28(12): 107101
[9] WANG Yong, **, YU Nai-Sen, LI Ming, LAU Kei-May . Improved AlGaN/GaN HEMTs Grown on Si Substrates Using Stacked AlGaN/AlN Interlayer by MOCVD[J]. Chin. Phys. Lett., 2011, 28(5): 107101
[10] YANG Ling, MA Jing-Jing, ZHU Cheng, HAO Yue, MA Xiao-Hua. Degradation of AlGaN/GaN High Electron Mobility Transistors with Different AlGaN Layer Thicknesses under Strong Electric Field[J]. Chin. Phys. Lett., 2010, 27(2): 107101
[11] YANG Ling, HAO Yue, MA Xiao-Hua, QUAN Si, HU Gui-Zhou, JIANG Shou-Gao, YANG Li-Yuan. Various Recipes of SiNx Passivated AlGaN/GaN High Electron Mobility Transistors in Correlation with Current Slump[J]. Chin. Phys. Lett., 2009, 26(11): 107101
[12] YANG Ling, HAO Yue, ZHOU Xiao-Wei, MA Xiao-Hua. Effects of Different Plasma Energy Treatments on n-Type Al0.4Ga0.6N Material[J]. Chin. Phys. Lett., 2009, 26(7): 107101
[13] JIANG Ran, LI Zi-Feng. Oxygen Recovery in Hf Oxide Films Fabricated by Sputtering[J]. Chin. Phys. Lett., 2009, 26(5): 107101
[14] YANG Ling, HAO Yue, LI Pei-Xian, ZHOU Xiao-Wei. Activation of Hydrogen-Passivated Mg in GaN-Based Light Emitting Diode Annealing with Minority-Carrier Injection[J]. Chin. Phys. Lett., 2009, 26(1): 107101
[15] JIANG Ran, YAO Li-Ting. Interface Evolution of TiN/Poly Si as Gate Material on Si/HfO2 Stack[J]. Chin. Phys. Lett., 2008, 25(6): 107101
Viewed
Full text


Abstract