Chin. Phys. Lett.  2015, Vol. 32 Issue (10): 104210    DOI: 10.1088/0256-307X/32/10/104210
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Trapping and Cooling of Single Atoms in an Optical Microcavity by a Magic-Wavelength Dipole Trap
LI Wen-Fang, DU Jin-Jin, WEN Rui-Juan, LI Gang, ZHANG Tian-Cai**
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006
Cite this article:   
LI Wen-Fang, DU Jin-Jin, WEN Rui-Juan et al  2015 Chin. Phys. Lett. 32 104210
Download: PDF(828KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present trapping and cooling of single cesium atoms inside a microcavity by means of an intracavity far-off-resonance trap (FORT). By the 'magic' wavelength FORT, we achieve state-insensitive single-atom trapping and cooling in a microcavity. The cavity transmission of the probe beam strongly coupled to single atoms enables us to continuously observe the intracavity atom trapping. The average atomic localization time inside the bright FORT is about 7 ms by introducing cavity cooling with appropriate detuning. This experiment presents great potential in coherent state manipulation for strongly coupled atom–photon systems in the context of cavity quantum electrodynamics.
Received: 19 June 2015      Published: 30 October 2015
PACS:  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  37.10.De (Atom cooling methods)  
  37.10.Gh (Atom traps and guides)  
  37.30.+i (Atoms, molecules, andions incavities)  
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/32/10/104210       OR      http://cpl.iphy.ac.cn/Y2015/V32/I10/104210
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Wen-Fang
DU Jin-Jin
WEN Rui-Juan
LI Gang
ZHANG Tian-Cai
[1] Haroche S 2013 Rev. Mod. Phys. 85 1083
[2] Kimble H J 1998 Phys. Scr. T76 127
[3] Berman P 1994 Cavity Quantum Electrodynamics (New York: Academic Press)
[4] Kimble H J 2008 Nature 453 1023
[5] Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221
[6] Ritter S, Nolleke C, Hahn C, Reiserer A, Neuzner A, Uphoff M, Mcke M, Figueroa E, Bochmann J and Rempe G 2012 Nature 484 195
[7] Specht H P, Nolleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S and Rempe G 2011 Nature 473 190
[8] Hijlkema M, Weber B, Specht H P, Webster S C, Kuhn A and Rempe G 2007 Nat. Phys. 3 253
[9] Nubmann S, Murr K, Hijlkema M, Weber B, Kuhn A and Rempe G 2005 Nat. Phys. 1 122
[10] Reiserer A, Nolleke C, Ritter S and Rempe G 2013 Phys. Rev. Lett. 110 223003
[11] Reiserer A, Ritter S and Rempe G 2013 Science 342 1349
[12] Mücke M, Figueroa E, Bochmann J, Hahn C, Murr K, Ritter S, Villas-Boas C J and Rempe G 2010 Nature 465 755
[13] Souza J A, Figueroa E, Chibani H, Villas-Boas C J and Rempe G 2013 Phys. Rev. Lett. 111 113602
[14] Schuster I, Kubanek A, Fuhrmanek A, Puppe T, Pinkse P W H, Murr K and Rempe G 2008 Nat. Phys. 4 382
[15] Kubanek A, Ourjoumtsev A, Schuster I, Koch M, Pinkse P W H, Murr K and Rempe G 2008 Phys. Rev. Lett. 101 203602
[16] Ye J, Vernooy D W and Kimble H J 1999 Phys. Rev. Lett. 83 4987
[17] Sauer A, Fortier K M, Chang M S, Hamley C D and Chapman M S 2004 Phys. Rev. A 69 051804(R)
[18] McKeever J, Buck J R, Boozer A D, Kuzmich A, Nagerl H C, Stamper-Kurn D M and Kimble H J 2003 Phys. Rev. Lett. 90 133602
[19] Li G, Zhang S, Isenhower L, Maller K and Saffman M 2012 Opt. Lett. 37 851
[20] Hood C J, Lynn T W, Doherty A C, Parkins A S and Kimble H J 2000 Science 287 1447
[21] Pinkse P W H, Fischer T, Maunz P and Rempe G 2000 Nature 404 365
[22] Kubanek A, Koch M, Sames C, Ourjoumtsev A, Pinkse P W H, Murr K and Rempe G 2009 Nature 462 898
[23] Fischer T, Maunz P, Pinkse P W H, Puppe T and Rempe G 2002 Phys. Rev. Lett. 88 163002
[24] Kubanek A, Koch M, Sames C, Ourjoumtsev A, Wilk T, Pinkse P W H and Rempe G 2011 Appl. Phys. B 102 433
[25] Ye J, Kimble H J and Katori H 2008 Science 320 1734
[26] Zhang P F, Zhang Y C, Li G, Du J J, Zhang Y F, Guo Y Q, Wang J M, Zhang T C and Li W D 2011 Chin. Phys. Lett. 28 044203
[27] Du J J, Li W F, Wen R J, Li G, Zhang P F and Zhang T C 2013 Appl. Phys. Lett. 103 083117
[28] Li W F, Du J J Wen R J, Li G, Yang P F, Liang J J and Zhang T C 2014 Appl. Phys. Lett. 104 113102
[29] Zhang P F, Guo Y Q, Li Z H, Zhang Y C, Zhang Y F, Du J J, Li G, Wang J M and Zhang T C 2011 Phys. Rev. A 83 031804(R)
[30] Maunz P 2004 Cavity Cooling and Spectroscopy of a Bound Atom-Cavity System (PhD dissertation) (Garching: Max-Plank-Institute of Quantum Optics)
[31] Horak P, Hechenblaikner G, Gheri K M, Stecher H and Ritsch H 1997 Phys. Rev. Lett. 79 4974
[32] Leibrandt D R, Labaziewicz J, Vuletic V and Chuang I L 2009 Phys. Rev. Lett. 103 103001
[33] Maunz P, Puppe T, Schuster I, Syassen N, Pinkse P W H and Rempe G 2004 Nature 428 50
[34] Hechenblaikner G, Gangl M, Horak P and Ritsch H 1998 Phys. Rev. A 58 3030
[35] Weiner J and Julienne P S 1999 Rev. Mod. Phys. 71 1
Related articles from Frontiers Journals
[1] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 104210
[2] Yao Chen, Fo-Liang Lin, Xi Liang, Nian-Quan Jiang. Programmable Quantum Processor with Quantum Dot Qubits[J]. Chin. Phys. Lett., 2019, 36(7): 104210
[3] Ji-Bing Yuan, Zhao-Hui Peng, Shi-Qing Tang, Deng-Yu Zhang. Superposed Transparency Effect and Entanglement Generation with Hybrid System of Photonic Molecule and Dipole Emitter[J]. Chin. Phys. Lett., 2019, 36(3): 104210
[4] Wang-Jun Lu, Zhen Li, Le-Man Kuang. Nonlinear Dicke Quantum Phase Transition and Its Quantum Witness in a Cavity-Bose–Einstein-Condensate System[J]. Chin. Phys. Lett., 2018, 35(11): 104210
[5] Kun Zhou, Jin-Ming Cui, Yun-Feng Huang, Zhao Wang, Zhong-Hua Qian, Qi-Ming Wu, Jian Wang, Ran He, Wei-Min Lv, Chang-Kang Hu, Yong-Jian Han, Chuan-Feng Li, Guang-Can Guo. An Ultraviolet Fiber Fabry–Pérot Cavity for Florescence Collection of Trapped Ions[J]. Chin. Phys. Lett., 2017, 34(1): 104210
[6] Yan-Li Xue, Ke Zhang, Bao-Hua Feng, Zhi-Yuan Li. Inhibition of Atomic Decay in Strongly Coupled Photonic Crystal Cavities[J]. Chin. Phys. Lett., 2016, 33(07): 104210
[7] Yong Cheng, Zheng Tan, Jin Wang, Yi-Fu Zhu, Ming-Sheng Zhan. Observation of Fano-Type Interference in a Coupled Cavity-Atom System[J]. Chin. Phys. Lett., 2016, 33(01): 104210
[8] WANG Hai-Yan, SU Dan, YANG Shuang, DOU Xiu-Ming, ZHU Hai-Jun, JIANG De-Sheng, NI Hai-Qiao, NIU Zhi-Chuan, ZHAO Cui-Lan, SUN Bao-Quan. Au Microdisk-Size Dependence of Quantum Dot Emission from the Hybrid Metal-Distributed Bragg Reflector Structures Employed for Single Photon Sources[J]. Chin. Phys. Lett., 2015, 32(10): 104210
[9] GUO Yan-Qing, DENG Yao, PEI Pei, TONG Dian-Min, WANG Dian-Fu, MI Dong. Quantum State Transfer among Three Ring-Connected Atoms[J]. Chin. Phys. Lett., 2015, 32(06): 104210
[10] TANG Shi-Qing, YUAN Ji-Bing, WANG Xin-Wen, KUANG Le-Man. Entanglement-Enhanced Two-Photon Delocalization in a Coupled-Cavity Array[J]. Chin. Phys. Lett., 2015, 32(4): 104210
[11] WU Huai-Zhi, YANG Zhen-Biao. Distributed Qutrit–Qutrit Entanglement through Laser-Driven Resonant Interaction[J]. Chin. Phys. Lett., 2014, 31(2): 104210
[12] WU Huai-Zhi, YANG Zhen-Biao. Robust Generation of Qutrit-Qutrit Entanglement through a Single Resonant Interaction Assisted by Moderate Driving[J]. Chin. Phys. Lett., 2013, 30(12): 104210
[13] ZHANG Yu-Yu, CHEN Qing-Hu, ZHU Shi-Yao. Vacuum Rabi Splitting and Dynamics of the Jaynes–Cummings Model for Arbitrary Coupling[J]. Chin. Phys. Lett., 2013, 30(11): 104210
[14] ZHONG Zhi-Rong. Coherent Operation of the Collective Atomic Modes in the Coupled Cavity System[J]. Chin. Phys. Lett., 2013, 30(8): 104210
[15] WANG Cong-Rong, LI Da-Chuang, ZHANG Feng-Yuan, XU Rui-Min. Realization of Optimal Universal and Phase-Covariant Quantum Machines via Input-Output Cavities[J]. Chin. Phys. Lett., 2013, 30(3): 104210
Viewed
Full text


Abstract