GENERAL |
|
|
|
|
Random Walks on Deterministic Weighted Scale-Free Small-World Networks with a Perfect Trap |
JING Xing-Li1, LING Xiang1, HU Mao-Bin2**, SHI Qing1 |
1School of Transportation Engineering, Hefei University of Technology, Hefei 230009 2School of Engineering Science, University of Science and Technology of China, Hefei 230026
|
|
Cite this article: |
JING Xing-Li, LING Xiang, HU Mao-Bin et al 2014 Chin. Phys. Lett. 31 080504 |
|
|
Abstract Random walks are the most fundamental process among various dynamical processes, and most previous works focused on binary networks. This work studies random walks on deterministic weighted scale-free small-world networks with a perfect trap. We derive an explicit expression of the mean first passage time on the network with a trap. Meanwhile, we present the evolutionary rule for the first passage time when the network grows. The study can be useful for understanding the random walks on weighted networks.
|
|
Published: 28 July 2014
|
|
PACS: |
05.40.Fb
|
(Random walks and Levy flights)
|
|
89.75.Hc
|
(Networks and genealogical trees)
|
|
05.60.Cd
|
(Classical transport)
|
|
|
|
|
[1] Watts D J and Strogatz S H 1998 Nature 393 440 [2] Barabási A L and Albert R 1999 Science 286 509 [3] Boccaletti S L V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175 [4] Liu C, Du W B and Wang W X 2014 PLoS ONE 9 e97822 [5] Dorogovtsev S N, Goltsev A V and Mendes J F F 2002 Phys. Rev. E 65 066122 [6] Comellas F, Fertin G and Raspaud A 2004 Phys. Rev. E 69 037104 [7] Jung S, Kim S and Kahng B 2002 Phys. Rev. E 65 056101 [8] Ravasz E, Somera A L, Mongru D A, Oltvai Z N and Barabási A L 2002 Science 297 1551 [9] Andrade J S, Herrmann H J and Andrade R F S 2009 Phys. Rev. Lett. 102 079901 [10] Gallos L K, Song C, Havlin S and Makse H A 2007 Proc. Natl. Acad. Sci. U.S.A. 104 7746 [11] Yan G, Zhou T, Wang J, Fu Z Q and Wang B H 2005 Chin. Phys. Lett. 22 510 [12] Wu X Y and Liu Z H 2007 Chin. Phys. Lett. 24 1118 [13] Shlesinger M F 2006 Nature 443 281 [14] Bénichou O, Loverdo C, Moreau M and Voituriez R 2011 Rev. Mod. Phys. 83 81 [15] Condamin S, Bénichou O, Tejedor V, Voituriez R and Klafter J 2007 Nature 450 77 [16] Tejedor V, Bénichou O and Voituriez R 2011 Phys. Rev. E 83 066102 [17] García Cantú A and Abad E 2008 Phys. Rev. E 77 031121 [18] Bentz J L, Turner J W and Kozak J J 2010 Phys. Rev. E 82 011137 [19] Zhang J Y, Sun W G and Chen G R 2012 Chin. Phys. B 21 038901 [20] Xing C M, Liu A F and Xu R Z 2012 Acta Phys. Sin. 61 200503 (in Chinese) [21] Liu H X and Zhang Z Z 2013 J. Chem. Phys. 138 114904 [22] Sun W G, Zhang J Y and Chen G R 2013 Chin. Phys. B 22 108904 [23] Agliari E and Burioni R 2009 Phys. Rev. E 80 031125 [24] Zhang Z Z, Yang Y H and Gao S Y 2011 Eur. Phys. J. B 84 331 [25] Zhang Z Z, Yang Y H and Lin Y 2012 Phys. Rev. E 85 011106 [26] Wu A C, Xu X J, Wu Z X and Wang Y H 2007 Chin. Phys. Lett. 24 577 [27] Zhang Z Z, Shan T and Chen G R 2013 Phys. Rev. E 87 012112 [28] Lin Y and Zhang Z Z 2013 Phys. Rev. E 87 062140 [29] Li Y J, Xi Z D and Xie Y B 2013 Chin. Phys. Lett. 30 110504 [30] Zhang Y C, Zhang Z Z, Zhou S G and Guan J H 2010 Physica A 389 3316 [31] Zhang Z Z, Rong L L and Zhou S G 2006 Phys. Rev. E 74 046105 [32] Chung F R K 1997 Spectral Graph Theory (Providence: American Mathematical Society) [33] Zhang Z Z, Qi Y, Zhou S G, Xie W L and Guan J H 2009 Phys. Rev. E 79 021127 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|