Chin. Phys. Lett.  2014, Vol. 31 Issue (08): 080503    DOI: 10.1088/0256-307X/31/8/080503
GENERAL |
Dynamics of the Kuramoto Model with Bimodal Frequency Distribution on Complex Networks
FENG Yue-E, LI Hai-Hong, YANG Jun-Zhong**
School of Science, Beijing University of Posts and Telecommunications, Beijing 100876
Cite this article:   
FENG Yue-E, LI Hai-Hong, YANG Jun-Zhong 2014 Chin. Phys. Lett. 31 080503
Download: PDF(1346KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We introduce a piecewise uniform frequency distribution to model a symmetrical bimodal natural frequency distribution and investigate the dynamics in the Kuramoto model on complex networks. We find that the scenario of the synchronization transition depends on the network topology. For an ER network, the incoherent state, standing wave states and stationary synchronous states are encountered successively with the increase of the coupling strength. However, for an SF network, there exists another type of synchronous states, traveling wave states, between the standing wave states and the stationary synchronous states.
Published: 28 July 2014
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  89.75.-k (Complex systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/8/080503       OR      https://cpl.iphy.ac.cn/Y2014/V31/I08/080503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FENG Yue-E
LI Hai-Hong
YANG Jun-Zhong
[1] Winfree A T 1980 The Geometry of Biological Time (New York: Springer)
[2] Strogatz S H 2003 sync: The Emerging Science of Spontaneous Order (New York: Hyperion)
[3] Neda Z, Ravasz E, Vicsek T, Brechet Y and Barabasi A L 2000 Phys. Rev. E 61 6987
[4] Guo X Y and Li J M 2011 Chin. Phys. Lett. 28 120503
[5] Eckhardt B, Ott E, Strogatz S H, Abrams D M and McRobie A 2007 Phys. Rev. E 75 021110
[6] Wei D Q, Luo X S, Chen H B and Zhang B 2011 Chin. Phys. Lett. 28 110501
[7] Strogatz S H 2000 Physica D 143 1
[8] Acebrón J A, Bonilla L L, Pérez-Vicente C J, Ritort F and Spigler R 2005 Rev. Mod. Phys. 77 137
[9] Kuramoto Y 1984 Chemical Oscillations, Waves and Turbulence (New York: Springer)
[10] Martens E A, Barreto E, Strogatz S H, Ott E, So P and Antonsen T M 2009 Phys. Rev. E 79 026204
[11] Hassan F E N, Paulsamy M, Fernando F F and Cerdeira H A 2009 Chaos 19 013103
[12] Moreno Y and Pacheco A F 2004 Europhys. Lett. 68 603
[13] Arenas A, Díaz-Guilera A and Perez-Vicente C J 2006 Phys. Rev. Lett. 96 114102
[14] Zhou C S and Kurths J 2006 Chaos 16 015104
[15] Gómez-Garde?es J, Moreno Y and Arenas A 2007 Phys. Rev. Lett. 98 034101
[16] Gómez-Garde?es J and Moreno Y 2006 Phys. Rev. E 73 056124
[17] Chen Y, Lü J H, Yu X H and Lin Z L 2013 SIAM J. Control Optim. 51 3274
[18] Lü J H and Chen G R 2005 IEEE Trans. Autom. Control 50 841
Related articles from Frontiers Journals
[1] Liang Zhang, Tian Tian, Pu Huang, Shaochun Lin, Jiangfeng Du. Coherent Transfer of Excitation in a Nanomechanical Artificial Lattice[J]. Chin. Phys. Lett., 2020, 37(1): 080503
[2] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 080503
[3] Nian-Ping Wu, Hong-Yan Cheng, Qiong-Lin Dai, Hai-Hong Li. The Ott–Antonsen Ansatz in Globally Coupled Phase Oscillators[J]. Chin. Phys. Lett., 2016, 33(07): 080503
[4] Liu-Hua Zhu. Effects of Reduced Frequency on Network Configuration and Synchronization Transition[J]. Chin. Phys. Lett., 2016, 33(05): 080503
[5] Di Yuan, Dong-Qiu Zhao, Yi Xiao, Ying-Xin Zhang. Travelling Wave in the Generalized Kuramoto Model with Inertia[J]. Chin. Phys. Lett., 2016, 33(05): 080503
[6] ZHANG Ji-Qian, HUANG Shou-Fang, PANG Si-Tao, WANG Mao-Sheng, GAO Sheng. Synchronization in the Uncoupled Neuron System[J]. Chin. Phys. Lett., 2015, 32(12): 080503
[7] HU Dong, SUN Xian, LI Ping, CHEN Yan, ZHANG Jie. Factors That Affect the Centrality Controllability of Scale-Free Networks[J]. Chin. Phys. Lett., 2015, 32(12): 080503
[8] SONG Xin-Fang, WANG Wen-Yuan. Target Inactivation and Recovery in Two-Layer Networks[J]. Chin. Phys. Lett., 2015, 32(11): 080503
[9] LIU Yu-Long, YU Xiao-Ming, HAO Yu-Hua. Analytical Results for Frequency-Weighted Kuramoto-Oscillator Networks[J]. Chin. Phys. Lett., 2015, 32(11): 080503
[10] FENG Yue-E, LI Hai-Hong. The Dependence of Chimera States on Initial Conditions[J]. Chin. Phys. Lett., 2015, 32(06): 080503
[11] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 080503
[12] JU Ping, YANG Jun-Zhong. Synchronization Dynamics in a System of Multiple Interacting Populations of Phase Oscillators[J]. Chin. Phys. Lett., 2015, 32(03): 080503
[13] YANG Yan-Jin, DU Ru-Hai, WANG Sheng-Jun, JIN Tao, QU Shi-Xian. Change of State of a Dynamical Unit in the Transition of Coherence[J]. Chin. Phys. Lett., 2015, 32(01): 080503
[14] G. Sivaganesh. An Analytical Study on the Synchronization of Murali–Lakshmanan–Chua Circuits[J]. Chin. Phys. Lett., 2015, 32(01): 080503
[15] ZOU Ying-Ying, LI Hai-Hong. Paths to Synchronization on Complex Networks with External Drive[J]. Chin. Phys. Lett., 2014, 31(10): 080503
Viewed
Full text


Abstract