FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Diffraction Properties for 1000 Line/mm Free-Standing Quantum-Dot-Array Diffraction Grating Fabricated by Focused Ion Beam |
ZHANG Ji-Cheng1, LIU Yu-Wei1, HUANG Cheng-Long1,2, ZHANG Qiang-Qiang1, YI Yong2, ZENG Yong1, ZHU Xiao-Li3, FAN Quan-Ping1, QIAN Feng1, WEI Lai1, WANG Hong-Bin1, WU Wei-Dong1**, CAO Lei-Feng1** |
1Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 2School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 3Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029
|
|
Cite this article: |
ZHANG Ji-Cheng, LIU Yu-Wei, HUANG Cheng-Long et al 2014 Chin. Phys. Lett. 31 124204 |
|
|
Abstract The traditional fabrication technique of quantum-dot-array diffraction grating (QDADG) is a hybrid lithography method that includes electron-beam lithography and x-ray lithography. In this work, 1000 line/mm free-standing QDADG has successfully been fabricated by focused ion beams (FIBs) for the first time. The diffraction patterns of the grating are measured in the 250–450 nm wavelength range from the xenon lamp source. In consequence, the QDADG in this experiment can be used to disperse light without high-order diffraction. The present inspiriting result demonstrates the prospect of FIB fabrication for high energy QDADG in the soft x-ray region.
|
|
Published: 12 January 2015
|
|
|
|
|
|
[1] Fill E et al 1999 Rev. Sci. Instrum. 70 2597 [2] Graf A et al 2004 Rev. Sci. Instrum. 75 4165 [3] Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L and Suter L J 2004 Phys. Plasmas 11 339 [4] Eagleton R T and James S F 2004 Rev. Sci. Instrum. 75 3969 [5] Born M and Wolf E 1980 Principle of Optics (London: Pergamon) [6] Eidmann K and Kishimoto T 1986 Appl. Phys. Lett. 49 377 [7] Schriever G, Lebert R, Naweed A, Mager S, Neff W, Kraft S, Scholze F and Ulm G 1997 Rev. Sci. Instrum. 68 3301 [8] Ruggles L E, Cuneo M E, Porter J L, Wenger D F and Simpson W W 2001 Rev. Sci. Instrum. 72 1218 [9] Cao L F China Patent No 200410081499 (Aug. 10 2004) [10] Cao L F, F?rster E, Fuhrmann A, Wang C K, Kuang L Y, Liu S Y and Ding Y K 2007 Appl. Phys. Lett. 90 053501 [11] David C, Bruder J, Rohbeck T, Grünzweig C, Kottler C, Diaz A, Bunk O and Pfeiffer F 2007 Microelectron. Eng. 84 1172 [12] Li H L, Wu J, Zhu X L, Xie C Q, Liu M and Cao L F 2009 Acta Opt. Sin. 29 2650 [13] Gorelick S, Guzenko V A, Vila-Comamala J and David C 2010 Nanotechnology 21 295303 [14] Kuang L Y, Cao L F, Zhu X L, Wu S C, Wang Z B, Wang C K, Liu S Y, Jiang S E, Yang J M, Ding Y K, Xie C Q and Zheng J 2011 Opt. Lett. 36 3954 [15] Reyntjens S and Puers R 2001 J. Micromech. Microeng. 11 287 [16] Fujita J, Ishida M, Ichihashi T, Ochiai Y, Kaito T and Matsui S 2003 Nucl. Instrum. Methods Phys. Res. Sect. B 206 472 [17] Fu Y Q, Kok N and Bryan A 2000 Microelectron. Eng. 54 211 [18] Tseng A A 2004 J. Micromech. Microeng. 14 R15 [19] Goodman J W 2005 Introduction to Fourier Optics (Colorado: Roberts and Company) [20] Huang C L, Zhang J C, Diao K D, Zeng Y, Yi Y, Cao L F and Wang H B 2014 Acta Phys. Sin. 63 018101 (in Chinese) [21] Wang C K, Kuang L Y, Wang Z B, Cao L F, Liu S Y, Ding Y K, Wang D Q, Zhu X L and Xie C Q 2008 High Power Laser Part. Beams 20 607 (in Chinese) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|