Chin. Phys. Lett.  2014, Vol. 31 Issue (12): 124204    DOI: 10.1088/0256-307X/31/12/124204
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Diffraction Properties for 1000 Line/mm Free-Standing Quantum-Dot-Array Diffraction Grating Fabricated by Focused Ion Beam
ZHANG Ji-Cheng1, LIU Yu-Wei1, HUANG Cheng-Long1,2, ZHANG Qiang-Qiang1, YI Yong2, ZENG Yong1, ZHU Xiao-Li3, FAN Quan-Ping1, QIAN Feng1, WEI Lai1, WANG Hong-Bin1, WU Wei-Dong1**, CAO Lei-Feng1**
1Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900
2School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010
3Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029
Cite this article:   
ZHANG Ji-Cheng, LIU Yu-Wei, HUANG Cheng-Long et al  2014 Chin. Phys. Lett. 31 124204
Download: PDF(993KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The traditional fabrication technique of quantum-dot-array diffraction grating (QDADG) is a hybrid lithography method that includes electron-beam lithography and x-ray lithography. In this work, 1000 line/mm free-standing QDADG has successfully been fabricated by focused ion beams (FIBs) for the first time. The diffraction patterns of the grating are measured in the 250–450 nm wavelength range from the xenon lamp source. In consequence, the QDADG in this experiment can be used to disperse light without high-order diffraction. The present inspiriting result demonstrates the prospect of FIB fabrication for high energy QDADG in the soft x-ray region.
Published: 12 January 2015
PACS:  42.79.Dj (Gratings)  
  42.25.Fx (Diffraction and scattering)  
  81.16.Rf (Micro- and nanoscale pattern formation)  
  81.07.Ta (Quantum dots)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/12/124204       OR      https://cpl.iphy.ac.cn/Y2014/V31/I12/124204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Ji-Cheng
LIU Yu-Wei
HUANG Cheng-Long
ZHANG Qiang-Qiang
YI Yong
ZENG Yong
ZHU Xiao-Li
FAN Quan-Ping
QIAN Feng
WEI Lai
WANG Hong-Bin
WU Wei-Dong
CAO Lei-Feng
[1] Fill E et al 1999 Rev. Sci. Instrum. 70 2597
[2] Graf A et al 2004 Rev. Sci. Instrum. 75 4165
[3] Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L and Suter L J 2004 Phys. Plasmas 11 339
[4] Eagleton R T and James S F 2004 Rev. Sci. Instrum. 75 3969
[5] Born M and Wolf E 1980 Principle of Optics (London: Pergamon)
[6] Eidmann K and Kishimoto T 1986 Appl. Phys. Lett. 49 377
[7] Schriever G, Lebert R, Naweed A, Mager S, Neff W, Kraft S, Scholze F and Ulm G 1997 Rev. Sci. Instrum. 68 3301
[8] Ruggles L E, Cuneo M E, Porter J L, Wenger D F and Simpson W W 2001 Rev. Sci. Instrum. 72 1218
[9] Cao L F China Patent No 200410081499 (Aug. 10 2004)
[10] Cao L F, F?rster E, Fuhrmann A, Wang C K, Kuang L Y, Liu S Y and Ding Y K 2007 Appl. Phys. Lett. 90 053501
[11] David C, Bruder J, Rohbeck T, Grünzweig C, Kottler C, Diaz A, Bunk O and Pfeiffer F 2007 Microelectron. Eng. 84 1172
[12] Li H L, Wu J, Zhu X L, Xie C Q, Liu M and Cao L F 2009 Acta Opt. Sin. 29 2650
[13] Gorelick S, Guzenko V A, Vila-Comamala J and David C 2010 Nanotechnology 21 295303
[14] Kuang L Y, Cao L F, Zhu X L, Wu S C, Wang Z B, Wang C K, Liu S Y, Jiang S E, Yang J M, Ding Y K, Xie C Q and Zheng J 2011 Opt. Lett. 36 3954
[15] Reyntjens S and Puers R 2001 J. Micromech. Microeng. 11 287
[16] Fujita J, Ishida M, Ichihashi T, Ochiai Y, Kaito T and Matsui S 2003 Nucl. Instrum. Methods Phys. Res. Sect. B 206 472
[17] Fu Y Q, Kok N and Bryan A 2000 Microelectron. Eng. 54 211
[18] Tseng A A 2004 J. Micromech. Microeng. 14 R15
[19] Goodman J W 2005 Introduction to Fourier Optics (Colorado: Roberts and Company)
[20] Huang C L, Zhang J C, Diao K D, Zeng Y, Yi Y, Cao L F and Wang H B 2014 Acta Phys. Sin. 63 018101 (in Chinese)
[21] Wang C K, Kuang L Y, Wang Z B, Cao L F, Liu S Y, Ding Y K, Wang D Q, Zhu X L and Xie C Q 2008 High Power Laser Part. Beams 20 607 (in Chinese)
Related articles from Frontiers Journals
[1] Yanyan Cao, Bocheng Yu, Yangyang Fu, Lei Gao, and Yadong Xu. Phase-Gradient Metasurfaces Based on Local Fabry–Pérot Resonances[J]. Chin. Phys. Lett., 2020, 37(9): 124204
[2] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings *[J]. Chin. Phys. Lett., 0, (): 124204
[3] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings[J]. Chin. Phys. Lett., 2020, 37(6): 124204
[4] Xia-Zhi Li, Hong-Bin Zhuo, De-Bin Zou, Shi-Jie Zhang, Hong-Yu Zhou, Na Zhao, Yue Lang, De-Yao Yu. High-Order-Harmonic Generation from a Relativistic Circularly Polarized Laser Interacting with Over-Dense Plasma Grating[J]. Chin. Phys. Lett., 2017, 34(9): 124204
[5] Chen Li, Tian-Wei Zhou, Jing-Gang Xiang, Yue-Yang Zhai, Xu-Guang Yue, Shi-Feng Yang, Wei Xiong, Xu-Zong Chen. Two-Dimensional Talbot Effect with Atomic Density Gratings[J]. Chin. Phys. Lett., 2017, 34(8): 124204
[6] Jin Kang, Bao-Le Lu, Xin-Yuan Qi, Xiao-Qiang Feng, Hao-Wei Chen, Man Jiang, Yang Wang, Pan Fu, Jin-Tao Bai. An Efficient Single-Frequency Yb-Doped All-Fiber MOPA Laser at 1064.3nm[J]. Chin. Phys. Lett., 2016, 33(12): 124204
[7] Xiao-Qiang Zhang, Rui-Shan Chen, Yong Zhou, Hai Ming, An-Ting Wang. Convention of Optical Vortices in Two-Helix Long-Period Fiber Gratings[J]. Chin. Phys. Lett., 2016, 33(08): 124204
[8] Yong Liu, Chen Wang, Anastasia Nemkova, Shi-Ming Hu, Zhi-Yong Li, Yu-De Yu. Structured Illumination Chip Based on Integrated Optics[J]. Chin. Phys. Lett., 2016, 33(05): 124204
[9] SONG Yu-Zhi, ZHANG Yu, SONG Jia-Kun, LI Kang-Wen, ZHANG Zu-Yin, XU Yun, SONG Guo-Feng, CHEN Liang-Hui. Single Mode 2 μm GaSb Based Laterally Coupled Distributed Feedback Quantum-Well Laser Diodes with Metal Grating[J]. Chin. Phys. Lett., 2015, 32(07): 124204
[10] LU Bao-Le, HUANG Sheng-Hong, YIN Mo-Juan, CHEN Hao-Wei, REN Zhao-Yu, BAI Jin-Tao. Wavelength-Tunable Single Frequency Ytterbium-Doped Fiber Laser with Loop Mirror Filter[J]. Chin. Phys. Lett., 2015, 32(4): 124204
[11] LIU Ning-Liang, LIU Shu-Hui, LU Pei-Xiang. A Femtosecond-Laser-Induced Fiber Bragg Grating with Supermode Resonances for Sensing Applications[J]. Chin. Phys. Lett., 2014, 31(09): 124204
[12] YAO Bao-Yin, FENG Li-Shuang, WANG Xiao, LIU Wei-Fang, LIU Mei-Hua. Micrograting Displacement Sensor with Integrated Electrostatic Actuation[J]. Chin. Phys. Lett., 2014, 31(07): 124204
[13] ZHAO Jian-Yi, CHEN Xin, ZHOU Ning, HUANG Xiao-Dong, CAO Ming-De, LIU Wen. A 16-Channel Distributed-Feedback Laser Array with a Monolithic Integrated Arrayed Waveguide Grating Multiplexer for a Wavelength Division Multiplex-Passive Optical Network System Network[J]. Chin. Phys. Lett., 2014, 31(07): 124204
[14] HU Jin-Hua, HUANG Yong-Qing, REN Xiao-Min, DUAN Xiao-Feng, LI Ye-Hong, WANG Qi, ZHANG Xia, WANG Jun. Modeling of Fano Resonance in High-Contrast Resonant Grating Structures[J]. Chin. Phys. Lett., 2014, 31(06): 124204
[15] CHEN Xin, ZHAO Jian-Yi, ZHOU Ning, HUANG Xiao-Dong, LIU Wen. Four-Channel 1.55-μm DFB Laser Array Monolithically Integrated with a 4×1 Multimode-Interference Combiner Based on Nanoimprint Lithography[J]. Chin. Phys. Lett., 2014, 31(04): 124204
Viewed
Full text


Abstract