Chin. Phys. Lett.  2013, Vol. 30 Issue (5): 054205    DOI: 10.1088/0256-307X/30/5/054205
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
A Multiple Phase-Shifted Distributed Feedback (DFB) Laser Fabricated by Nanoimprint Lithography
ZUO Qiang1**, ZHAO Jian-Yi1, CHEN Xin1, WANG Zhi-Hao1, SUN Tang-You1, ZHOU Ning2, ZHAO Yan-Li1, XU Zhi-Mou1, LIU Wen1,2**
1Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074
2Accelink Technologies Company, Ltd, Wuhan 430074
Cite this article:   
ZUO Qiang, ZHAO Jian-Yi, CHEN Xin et al  2013 Chin. Phys. Lett. 30 054205
Download: PDF(740KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Multiple phase-shifted (MPS) diffraction grating is an effective way proposed to overcome the spatial hole burning (SHB) effect in a distributed feedback (DFB) laser. We present two symmetric λ/8 phase-shifted DFB lasers by using nanoimprint lithography (NIL). The threshold current of a typical laser is less than 15 mA. The side mode suppression ratio (SMSR) is still above 42 dB even at 100 mA current injection. To show the versatility of NIL, eight different wavelength MPS-DFB lasers on this single chip are also demonstrated. Our results prove that NIL is a promising tool for fabricating high performance complex grating DFB lasers.
Received: 26 December 2012      Published: 31 May 2013
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  81.16.Nd (Micro- and nanolithography)  
  42.79.Dj (Gratings)  
  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/5/054205       OR      https://cpl.iphy.ac.cn/Y2013/V30/I5/054205
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZUO Qiang
ZHAO Jian-Yi
CHEN Xin
WANG Zhi-Hao
SUN Tang-You
ZHOU Ning
ZHAO Yan-Li
XU Zhi-Mou
LIU Wen
[1] Pascal C 1994 IEEE J. Quantum Electron. 30 2467
[2] Jose A P M, Carlos A F F and Jose B M B 2010 Opt. Laser Technol. 42 975
[3] Carlos A F F, Jose A P M and Jose B M B 2009 Eur. Phys. J. Appl. Phys. 46 30701
[4] Jose B M B, Jose A P M and Carlos A F F 2009 Eur. Phys. J. Appl. Phys. 48 30701
[5] Shen D X, Gu W Y and Xu D X 1999 Chin. Phys. Lett. 16 721
[6] Tang M J et al 2012 Chin. Phys. Lett. 29 098101
[7] Liang X G et al 2007 Nano Lett. 7 3774
[8] Schift H et al 2005 Nanotechnology 16 S261
[9] Yu Z et al 2000 Appl. Phys. Lett. 77 927
[10] Chou S Y et al 1995 Appl. Phys. Lett. 67 3114
[11] Wang L et al 2012 Microelectron. Eng. 93 43
[12] Zuo Q et al 2011 Adv. Mater. Res. 311-313 287
[13] Yanagisawa M et al 2009 J. Vac. Sci. Technol. B 27 2776
[14] Zhang Y W et al 2011 J. Phys.: Conf. Ser. 276 012104
Related articles from Frontiers Journals
[1] Yu Ma, Wei-Jiang Li Yun-Fei, Xu, Jun-Qi Liu, Ning Zhuo, Ke Yang, Jin-Chuan Zhang, Shen-Qiang Zhai, Shu-Man Liu, Li-Jun Wang, and Feng-Qi Liu. Flat Top Optical Frequency Combs Based on a Single-Core Quantum Cascade Laser at Wavelength of $\sim$ 8.7 μm[J]. Chin. Phys. Lett., 2023, 40(1): 054205
[2] Dai-Bing Zhou, Song Liang, Yi-Ming He, Yun-Long Liu, Wu Zhao, Dan Lu, Ling-Juan Zhao, Wei Wang. A 10 Gb/s 1.5 μm Widely Tunable Directly Modulated InGaAsP/InP DBR Laser *[J]. Chin. Phys. Lett., 0, (): 054205
[3] Dai-Bing Zhou, Song Liang, Yi-Ming He, Yun-Long Liu, Wu Zhao, Dan Lu, Ling-Juan Zhao, Wei Wang. A 10 Gb/s 1.5 μm Widely Tunable Directly Modulated InGaAsP/InP DBR Laser[J]. Chin. Phys. Lett., 2020, 37(6): 054205
[4] Yi-Chen Xu, Zhi-Min Wang, Feng-Feng Zhang, Rui-Nan Yang, Xu-Chao Liu, Yue Song, Yong Bo, Qin-Jun Peng, Zu-Yan Xu. High-Efficiency Spectral-Beam-Combined 930nm Diode Laser Source[J]. Chin. Phys. Lett., 2020, 37(5): 054205
[5] Rui Guo, Ye-Wen Jiang, Ting-Hao Liu, Qiang Liu, Ma-Li Gong. Pulse Characteristics of Cavityless Solid-State Laser[J]. Chin. Phys. Lett., 2020, 37(4): 054205
[6] Ting Fu, Yu-Fei Wang, Xue-You Wang, Xu-Yan Zhou, Wan-Hua Zheng. Mode Control of Quasi-PT Symmetry in Laterally Multi-Mode Double Ridge Semiconductor Laser[J]. Chin. Phys. Lett., 2020, 37(4): 054205
[7] Yan-Ping Li, Li-Jun Yuan, Li Tao, Wei-Xi Chen, Bao-Jun Wang, Jiao-Qing Pan. III–V/Si Hybrid Laser Array with DBR on Si Waveguide[J]. Chin. Phys. Lett., 2019, 36(10): 054205
[8] Zhong-Hao Chen, Hong-Wei Qu, Xiao-Long Ma, Ai-Yi Qi, Xu-Yan Zhou, Yu-Fei Wang, Wan-Hua Zheng. High-Brightness Low-Divergence Tapered Lasers with a Narrow Taper Angle[J]. Chin. Phys. Lett., 2019, 36(8): 054205
[9] Ya-Jie Li, Jia-Qi Wang, Lu Guo, Guang-Can Chen, Zhao-Song Li, Hong-Yan Yu, Xu-Liang Zhou, Huo-Lei Wang, Wei-Xi Chen, Jiao-Qing Pan. Electrically and Optically Bistable Operation in an Integration of a 1310nm DFB Laser and a Tunneling Diode[J]. Chin. Phys. Lett., 2018, 35(4): 054205
[10] Meng Xun, Yun Sun, Chen Xu, Yi-Yang Xie, Zhi Jin, Jing-Tao Zhou, Xin-Yu Liu, De-Xin Wu. Beam Steering Analysis in Optically Phased Vertical Cavity Surface Emitting Laser Array[J]. Chin. Phys. Lett., 2018, 35(3): 054205
[11] Qiang Gao, Wu-Bin Weng, Bo Li, Zhong-Shan Li. Quantitative and Spatially Resolved Measurement of Atomic Potassium in Combustion Using Diode Laser[J]. Chin. Phys. Lett., 2018, 35(2): 054205
[12] Xiao-Wang Fan, Jian-Ping Liu, Feng Zhang, Masao Ikeda, De-Yao Li, Shu-Ming Zhang, Li-Qun Zhang, Ai-Qin Tian, Peng-Yan Wen, Guo-Hong Ma, Hui Yang. Effect of Droop Phenomenon in InGaN/GaN Blue Laser Diodes on Threshold Current[J]. Chin. Phys. Lett., 2017, 34(9): 054205
[13] Shu-Shan Huang, Yu Zhang, Yong-Ping Liao, Cheng-Ao Yang, Xiao-Li Chai, Ying-Qiang Xu, Hai-Qiao Ni, Zhi-Chuan Niu. High-Power Single-Spatial-Mode GaSb Tapered Laser around 2.0μm with Very Small Lateral Beam Divergence[J]. Chin. Phys. Lett., 2017, 34(8): 054205
[14] Si-Hang Wei, Xiang-Jun Shang, Ben Ma, Ze-Sheng Chen, Yong-Ping Liao, Hai-Qiao Ni, Zhi-Chuan Niu. Intracavity Spontaneous Parametric Down-Conversion in Bragg Reflection Waveguide Edge Emitting Diode[J]. Chin. Phys. Lett., 2017, 34(7): 054205
[15] Yang Chen, Yu-Fei Wang, Hong-Wei Qu, Yu-Fang Zhang, Yun Liu, Xiao-Long Ma, Xiao-Jie Guo, Peng-Chao Zhao, Wan-Hua Zheng. High Coupling Efficiency of the Fiber-Coupled Module Based on Photonic-Band-Crystal Laser Diodes[J]. Chin. Phys. Lett., 2017, 34(7): 054205
Viewed
Full text


Abstract