Chin. Phys. Lett.  2013, Vol. 30 Issue (2): 020304    DOI: 10.1088/0256-307X/30/2/020304
GENERAL |
Quantum Random Walk in Periodic Potential on a Line
LI Min, ZHANG Yong-Sheng**, GUO Gunag-Can
Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026
Cite this article:   
LI Min, ZHANG Yong-Sheng, GUO Gunag-Can 2013 Chin. Phys. Lett. 30 020304
Download: PDF(543KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the discrete-time quantum random walks on a line in periodic potential. The probability distribution with periodic potential is more complex compared to the normal quantum walks, and the standard deviation σ has interesting behaviors for different period q and parameter θ. We study the behavior of standard deviation with variation in walk steps, period, and θ. The standard deviation increases approximately linearly with θ and decreases with 1/q for θ∈(0,π/4), and increases approximately linearly with 1/q for θ∈[π/4,π/2). For θ∈(π/4, 3π/4), the transmission is larger than the reflection, with sensibility the diffussion will be accelerated. However, when q=2, the standard deviations are nearly the same, and when q>2, the standard deviation will decrease.
Received: 15 November 2012      Published: 02 March 2013
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  05.30.-d (Quantum statistical mechanics)  
  05.40.Fb (Random walks and Levy flights)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/2/020304       OR      https://cpl.iphy.ac.cn/Y2013/V30/I2/020304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Min
ZHANG Yong-Sheng
GUO Gunag-Can
[1] Aharonov Y, Davidovich L and Zagury N 1993 Phys. Rev. A 48 1687
[2] Nayak A and Vishwanath A 2000 Technical Report, Center for Discrete Mathematics & Theoretical Computer Science
[3] Kempe J 2003 Contemporary Phys. 44 307
[4] Childs A M, Cleve R, Deotto E, Farhi E, Gutmann S and Spielman D A 2003 Proceedings of 35th ACM symposium on Theory of computing (San Diego, California, USA 9–11 June 2003) p 59 (New York: ACM Press)
[5] Shenvi N, Kempe J and Whaley K B 2003 Phys. Rev. A 67 052307
[6] Childs A M, Farhi E and Gutmann S 2002 Quantum Inf. Process. 1 35
[7] Childs A M and Goldstone J 2004 Phys. Rev. A 70 022314
[8] Ambainis A 2003 Int. J. Quantum Inf. 01 507
[9] Ambainis A, Kempe J and Rivosh A 2005 Proceedings of 16th ACM-SIAM Symposium on Discrete Algorithms (Vancouver, BC, Canada 23–25 January 2005) p 1099
[10] Childs A M 2009 Phys. Rev. Lett. 102 180501
[11] Lovett N B, Cooper S, Everitt M, Trevers Mand Kendon V 2010 Phys. Rev. A 81 042330
[12] Aharonov D, Ambainis A, Kempe J and Vazirani U 2001 Proceeding of STOC'01 Thirty-third Annual ACM Symposium Theory Computing (Heraklion Crete Greece 6–8 July 2001) p 50
[13] Kwek L C and Setiawan 2011 Phys. Rev. A 84 032319
[14] Sebby-Strabley J, Anderlini M, Jessen P S and Porto J V 2006 Phys. Rev. A 73 033605
[15] Perets H B, Lahini Y, Pozzi F, Sorel M, Morandotti R andSilberberg Y 2008 Phys. Rev. Lett. 100 170506
[16] Mayer K, Tichy M C, Mintert F, Konrad Tand Buchleitner A 2011 Phys. Rev. A 83 062307
[17] Brun T A, Carteret H A and Ambainis A 2003 Phys. Rev. A 67 052317
[18] Brun T A, Carteret H A and Ambainis A 2003Phys. Rev. A 67 032304
[19] Travaglione B C and Milburn G J 2002 Phys. Rev. A 65 032310
[20] Feldman E and Hillery M 2004 Phys. Lett. A 324 277
[21] Hillery M, Bergou J and Feldman E 2003 Phys. Rev. A 68 032314
[22] Chandrashekar C M, Srikanth R and Laflamme R 2008 Phys. Rev. A 77 032326
[23] Wojcik A, Luczak T, Kurzynski P, Grudka A and Bednarska M 2004 Phys. Rev. Lett. 93 180601
[24] Ribeiro P, Milman P and Mosseri R 2004 Phys. Rev. Lett. 93 190503
[25] Shikano Y and Katsura H 2010 Phys. Rev. E 82 031122
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 020304
[2] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 020304
[3] Zhi-Jin Tao, Li-Geng Yu, Peng Xu, Jia-Yi Hou, Xiao-Dong He, and Ming-Sheng Zhan. Efficient Two-Dimensional Defect-Free Dual-Species Atom Arrays Rearrangement Algorithm with Near-Fewest Atom Moves[J]. Chin. Phys. Lett., 2022, 39(8): 020304
[4] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 020304
[5] Qi Zhang and Guang-Ming Zhang. Noise-Induced Entanglement Transition in One-Dimensional Random Quantum Circuits[J]. Chin. Phys. Lett., 2022, 39(5): 020304
[6] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 020304
[7] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 020304
[8] Ao-Lin Guo , Tao Tu, Le-Tian Zhu , and Chuan-Feng Li. High-Fidelity Geometric Gates with Single Ions Doped in Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 020304
[9] Bo Gong , Tao Tu, Ao-Lin Guo , Le-Tian Zhu , and Chuan-Feng Li. A Noise-Robust Pulse for Excitation Transfer in a Multi-Mode Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(4): 020304
[10] Hongye Yu, Frank Wilczek, and Biao Wu. Quantum Algorithm for Approximating Maximum Independent Sets[J]. Chin. Phys. Lett., 2021, 38(3): 020304
[11] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 020304
[12] Y.-K. Wu  and L.-M. Duan. A Two-Dimensional Architecture for Fast Large-Scale Trapped-Ion Quantum Computing[J]. Chin. Phys. Lett., 2020, 37(7): 020304
[13] Frank Wilczek, Hong-Ye Hu, Biao Wu. Resonant Quantum Search with Monitor Qubits[J]. Chin. Phys. Lett., 2020, 37(5): 020304
[14] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 020304
[15] Tong Wu, Yuxuan Zhou, Yuan Xu, Song Liu, Jian Li. Landau–Zener–Stückelberg Interference in Nonlinear Regime[J]. Chin. Phys. Lett., 2019, 36(12): 020304
Viewed
Full text


Abstract