GENERAL |
|
|
|
|
Quantum Random Walk in Periodic Potential on a Line |
LI Min, ZHANG Yong-Sheng**, GUO Gunag-Can |
Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026
|
|
Cite this article: |
LI Min, ZHANG Yong-Sheng, GUO Gunag-Can 2013 Chin. Phys. Lett. 30 020304 |
|
|
Abstract We investigate the discrete-time quantum random walks on a line in periodic potential. The probability distribution with periodic potential is more complex compared to the normal quantum walks, and the standard deviation σ has interesting behaviors for different period q and parameter θ. We study the behavior of standard deviation with variation in walk steps, period, and θ. The standard deviation increases approximately linearly with θ and decreases with 1/q for θ∈(0,π/4), and increases approximately linearly with 1/q for θ∈[π/4,π/2). For θ∈(π/4, 3π/4), the transmission is larger than the reflection, with sensibility the diffussion will be accelerated. However, when q=2, the standard deviations are nearly the same, and when q>2, the standard deviation will decrease.
|
|
Received: 15 November 2012
Published: 02 March 2013
|
|
PACS: |
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
05.30.-d
|
(Quantum statistical mechanics)
|
|
05.40.Fb
|
(Random walks and Levy flights)
|
|
|
|
|
[1] Aharonov Y, Davidovich L and Zagury N 1993 Phys. Rev. A 48 1687 [2] Nayak A and Vishwanath A 2000 Technical Report, Center for Discrete Mathematics & Theoretical Computer Science [3] Kempe J 2003 Contemporary Phys. 44 307 [4] Childs A M, Cleve R, Deotto E, Farhi E, Gutmann S and Spielman D A 2003 Proceedings of 35th ACM symposium on Theory of computing (San Diego, California, USA 9–11 June 2003) p 59 (New York: ACM Press) [5] Shenvi N, Kempe J and Whaley K B 2003 Phys. Rev. A 67 052307 [6] Childs A M, Farhi E and Gutmann S 2002 Quantum Inf. Process. 1 35 [7] Childs A M and Goldstone J 2004 Phys. Rev. A 70 022314 [8] Ambainis A 2003 Int. J. Quantum Inf. 01 507 [9] Ambainis A, Kempe J and Rivosh A 2005 Proceedings of 16th ACM-SIAM Symposium on Discrete Algorithms (Vancouver, BC, Canada 23–25 January 2005) p 1099 [10] Childs A M 2009 Phys. Rev. Lett. 102 180501 [11] Lovett N B, Cooper S, Everitt M, Trevers Mand Kendon V 2010 Phys. Rev. A 81 042330 [12] Aharonov D, Ambainis A, Kempe J and Vazirani U 2001 Proceeding of STOC'01 Thirty-third Annual ACM Symposium Theory Computing (Heraklion Crete Greece 6–8 July 2001) p 50 [13] Kwek L C and Setiawan 2011 Phys. Rev. A 84 032319 [14] Sebby-Strabley J, Anderlini M, Jessen P S and Porto J V 2006 Phys. Rev. A 73 033605 [15] Perets H B, Lahini Y, Pozzi F, Sorel M, Morandotti R andSilberberg Y 2008 Phys. Rev. Lett. 100 170506 [16] Mayer K, Tichy M C, Mintert F, Konrad Tand Buchleitner A 2011 Phys. Rev. A 83 062307 [17] Brun T A, Carteret H A and Ambainis A 2003 Phys. Rev. A 67 052317 [18] Brun T A, Carteret H A and Ambainis A 2003Phys. Rev. A 67 032304 [19] Travaglione B C and Milburn G J 2002 Phys. Rev. A 65 032310 [20] Feldman E and Hillery M 2004 Phys. Lett. A 324 277 [21] Hillery M, Bergou J and Feldman E 2003 Phys. Rev. A 68 032314 [22] Chandrashekar C M, Srikanth R and Laflamme R 2008 Phys. Rev. A 77 032326 [23] Wojcik A, Luczak T, Kurzynski P, Grudka A and Bednarska M 2004 Phys. Rev. Lett. 93 180601 [24] Ribeiro P, Milman P and Mosseri R 2004 Phys. Rev. Lett. 93 190503 [25] Shikano Y and Katsura H 2010 Phys. Rev. E 82 031122 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|