Chin. Phys. Lett.  2013, Vol. 30 Issue (1): 010201    DOI: 10.1088/0256-307X/30/1/010201
GENERAL |
A Method of Choosing the Optimal Number of Singular Values in the Inverse Laplace Transform for the Two-Dimensional NMR Distribution Function
JIANG Zhi-Min, WANG Wei-Min**
Institute of Quantum Electronics, School of Electronic Engineering and Computer Science, Peking University, Beijing 100871
Cite this article:   
JIANG Zhi-Min, WANG Wei-Min 2013 Chin. Phys. Lett. 30 010201
Download: PDF(1007KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Two-dimensional (2D) nuclear magnetic resonance (NMR) distributions as functions of diffusion coefficient and relaxation time are powerful tools in the study of porous media. We propose a practical method to perform proper truncation of singular value decomposition (TSVD) in Laplace inversion for obtaining 2D-NMR distributions from measured NMR data. By analyzing basic algorithms for Laplace inversion, it is well known that proper TSVD does not affect the inversion result for an ill-posed problem with zero-order Tikhonov regularization, but can greatly increase the inversion speed. In this new method, the optimal number of singular values for data compression is applied to each dimension separately. The method also makes full use of the redundancy nature of the data with a finite signal-to-noise ratio and well balances the tradeoff between the speed and the bias. The method does not require the stochastic information of the estimated parameters when obtaining the optimal number of singular values.
Received: 06 September 2012      Published: 04 March 2013
PACS:  02.30.Zz (Inverse problems)  
  76.60.-k (Nuclear magnetic resonance and relaxation)  
  82.56.-b (Nuclear magnetic resonance)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/1/010201       OR      https://cpl.iphy.ac.cn/Y2013/V30/I1/010201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JIANG Zhi-Min
WANG Wei-Min
[1] Brownstein K R and Tarr C E 1979 Phys. Rev. A 19 2446
[2] Petrov O V, Hay J, Mastikhin I V and Bruce J 2008 Food Res. Int. 41 758
[3] Sharma S, Casanova F, Wache W, Segrec A et al 2003 Magn. Reson. Imag. 21 249
[4] Latour L L, Kleinberg R L and Mitra P P 1995 J. Magn. Reson. A 112 83
[5] Hürlimann M D, Venkataramanan L and Flaum C 2002 J. Chem. Phys. 117 10223
[6] Hanson R J 1971 SIAM J. Numer. Anal. 8 616
[7] Shim Y S and Cho Z H 1981 IEEE Trans. Acoust. Speech Signal Process. 29 904
[8] Meiboom S and Gill D 1958 Rev. Sci. Instrum. 29 688
[9] Tanner J E 1970 J. Chem. Phys. 52 2523
[10] Venkataramanan L, Song Y Q and Hürlimann M D 2002 IEEE Trans. Signal Process. 50 1017
[11] Butler J P, Reeds J A and Dawson S V 1981 SIAM J. Numer. Anal. 18 381
[12] Hansen P C 1992 SIAM Rev. 34 561
[13] Teukolsky S A and Vetterling W T 2007 Art Sci. Computing (New York: Cambridge University Press) vol 37 p 487
[14] Song Y Q, Venkataramanan L and Hürlimann M D 2002 J. Magn. Reson. 154 261
[15] Dunn K J and G A LaTorraca 1999 J. Magn. Reson. 140 153
[16] Wu Z C 2010 Acta Phys. Sin. 59 6326 (in Chinese)
[17] Xia L L 2011 Chin. Phys. Lett. 28 120202
Related articles from Frontiers Journals
[1] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 010201
[2] Yong-Shuai Zhang, Jing-Song He. Bound-State Soliton Solutions of the Nonlinear Schr?dinger Equation and Their Asymmetric Decompositions[J]. Chin. Phys. Lett., 2019, 36(3): 010201
[3] XIA Li-Li . Poisson Theory and Inverse Problem in a Controllable Mechanical System[J]. Chin. Phys. Lett., 2011, 28(12): 010201
[4] CHEN Zhao-Jiang, ZHANG Shu-Yi. Thermal Depth Profiling Reconstruction by Multilayer Thermal Quadrupole Modeling and Particle Swarm Optimization[J]. Chin. Phys. Lett., 2010, 27(2): 010201
[5] WANG Qing-Hua, LI Zhen-Hua, LAI Jian-Cheng, HE An-Zhi. A Polydisperse Sphere Model Describing the Propagation of Light in Biological Tissue[J]. Chin. Phys. Lett., 2007, 24(4): 010201
[6] CUI Kai, YANG Guo-Wei. A Continuation Method of Parameter Inversion for Non-Equilibrium Convection--Dispersion Equation[J]. Chin. Phys. Lett., 2005, 22(11): 010201
Viewed
Full text


Abstract