Chin. Phys. Lett.  2012, Vol. 29 Issue (9): 094705    DOI: 10.1088/0256-307X/29/9/094705
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Negative Index Refraction in the Complex Ginzburg–Landau Equation in Connection with the Experimental CIMA Reaction
YUAN Xu-Jin**
Electromagnetic Scattering Key laboratory, Beijing Institute of Environmental Characteristics, Beijing 100854
Cite this article:   
YUAN Xu-Jin 2012 Chin. Phys. Lett. 29 094705
Download: PDF(465KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In comparison with the phenomenon of negative index refraction observed in artificial meta-materials, it is interesting to ask if this type of behavior also exists or not in reaction-diffusion systems that support nonlinear chemical waves. Previous studies indicate that the negative index refraction could occur on a interface between a medium of a normal wave and a medium that supports anti-waves. Here we investigate the phenomenon in the complex Ginzburg–Landau equation (CGLE) in a close relationship with the quantitative model for the chlorite-iodide-malonic acid (CIMA) reaction. The amplitude equation CGLE is deduced from the CIMA reaction, and simulations with mapped parameters from the reaction-diffusion equation reveal that the competition between normal waves and anti-waves on the interface determines whether the negative index refraction occurs or not.
Received: 11 June 2012      Published: 01 October 2012
PACS:  47.54.-r (Pattern selection; pattern formation)  
  82.40.Ck (Pattern formation in reactions with diffusion, flow and heat transfer)  
  89.75.Kd (Patterns)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/9/094705       OR      https://cpl.iphy.ac.cn/Y2012/V29/I9/094705
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YUAN Xu-Jin
[1] Yang S, Page J H, Liu Z, Cowan M L, Chan C T and Sheng P 2004 Phys. Rev. Lett. 93 024301
[2] Dong Z G, Zhu S N and Liu H 2006 Chin. Phys. B 15 1772
[3] Xiao M F and Wei J S 2010 Chin. Phys. B 19 057801
[4] Vanag V K and Epstein I R 2001 Science 294 835
[5] Vanag V K and Epstein I R 2002 Phys. Rev. Lett. 88 088303
[6] Shao X, Wu Y B, Zhang J Z, Wang H L and Ouyang Q 2008 Phys. Rev. Lett. 100 198304
[7] Yuan X J, Wang H L and Ouyang Q 2011 Phys. Rev. Lett. 106 188303
[8] Yang H J, Yang J Z and Hu G 2007 Chin. Phys. Lett. 24 2752
[9] Yuan X P, Chen J X, Zhao Y H, Lou Q, Wang L L and Shen Q 2011 Chin. Phys. Lett. 28 100505
[10] Cao Z J, Zhang H and Hu G 2007 Europhys. Lett. 79 34002
[11] Huang X Q, Cui X H, Cao Z J, Liao X H, Zhang H and Hu G 2009 Commun. Theor. Phys. 52 128
[12] Kuramoto Y 1984 Chemical Oscillations, Waves and Turbulence (Berlin: Springer-Verlag)
[13] Shao X, Ren Y and Ouyang Q 2006 Chin. Phys. B 15 513
[14] Lengyel I and Epstein I R 1991 Science 251 650
[15] Ouyang Q and Swinney H L 1991 Nature 352 610
[16] Yuan X J, Shao X, Liao H M and Ouyang Q 2009 Chin. Phys. Lett. 26 024702
[17] Yuan X J, Lu X C, Wang H L and Ouyang Q 2009 Phys. Rev. E 80 066201
[18] Nicola E M, Brush L and B?r M 2004 J. Phys. Chem. B 108 14733
[19] Zhang C X, Liao H M, Zhou L Q and Ouyang Q 2004 J. Phys. Chem. B 108 16990
Related articles from Frontiers Journals
[1] Tao HU, Meng-Dan HU, Si-si Zhou, Dong-Ke SUN. An Immersed Boundary-Lattice Boltzmann Prediction for Particle Hydrodynamic Focusing in Annular Microchannels[J]. Chin. Phys. Lett., 2018, 35(10): 094705
[2] Di Wu, Li Duan, Qi Kang. Wavenumber Selection by Bénard–Marangoni Convection at High Supercritical Number[J]. Chin. Phys. Lett., 2017, 34(5): 094705
[3] SUN Dong-Ke, ZHANG Qing-Yu, CAO Wei-Sheng, ZHU Ming-Fang. Simulation of Dendritic Growth with Melt Convection in Solidification of Ternary Alloys[J]. Chin. Phys. Lett., 2015, 32(06): 094705
[4] WANG Si-Ying, DUAN Wen-Gang, YIN Xie-Zhen. Transition Mode of Two Parallel Flags in Uniform Flow[J]. Chin. Phys. Lett., 2013, 30(11): 094705
[5] WANG Ya-Min, LIU Yong, WANG Jing, and LIU Yu-Rong. Weak Field-Induced Evolution of Spiral Wave in Small-World Networks of Hodgkin–Huxley Neurons[J]. Chin. Phys. Lett., 2012, 29(8): 094705
[6] GU Guo-Feng,WEI Hai-Ming,TANG Guo-Ning**. Wave Optics in Discrete Excitable Media[J]. Chin. Phys. Lett., 2012, 29(5): 094705
[7] OUYANG Ji-Ting, DUAN Xiao-Xi, XU Shao-Wei, HE Feng. The Key Factor for Uniform and Patterned Glow Dielectric Barrier Discharge[J]. Chin. Phys. Lett., 2012, 29(2): 094705
[8] JIANG Mi, MA Ping. Vortex Turbulence due to the Interplay of Filament Tension and Rotational Anisotropy[J]. Chin. Phys. Lett., 2009, 26(7): 094705
[9] YUAN Xu-Jin, SHAO Xin, LIAO Hui-Min, OUYANG Qi. Pattern Formation in the Turing-Hopf Codimension-2 Phase Space in a Reaction-Diffusion System[J]. Chin. Phys. Lett., 2009, 26(2): 094705
[10] MA Jun, JIA Ya, TANG Jun, YANG Li-Jian. Breakup of Spiral Waves in Coupled Hindmarsh--Rose Neurons[J]. Chin. Phys. Lett., 2008, 25(12): 094705
[11] MA Wen-Jie, WANG Yu-Ren, LAN Ding. Role of Convection Flow on the Pattern Formation in the Drying Process of Colloidal Suspension[J]. Chin. Phys. Lett., 2008, 25(4): 094705
[12] REN Ji-Rong, ZHU Tao, DUAN Yi-Shi. Topological Aspect of Knotted Vortex Filaments in Excitable Media[J]. Chin. Phys. Lett., 2008, 25(2): 094705
[13] LI Bing-Wei, SUN Li-Li, CHEN Bin, YING He-Ping. Controlling Spiral Dynamics in Excitable Media by a Weakly Localized Pacing[J]. Chin. Phys. Lett., 2007, 24(8): 094705
[14] SHANG Wan-Li, WANG De-Zhen. Concentric-Ring Patterns in a Helium Dielectric Barrier Discharge at Atmospheric Pressure[J]. Chin. Phys. Lett., 2007, 24(7): 094705
[15] ZHANG Hong, , HU Bambi, LI Bing-Wei, DUAN Yi-Shi. Topological Constraints on Scroll and Spiral Waves in Excitable Mediac[J]. Chin. Phys. Lett., 2007, 24(6): 094705
Viewed
Full text


Abstract