Chin. Phys. Lett.  2012, Vol. 29 Issue (9): 095201    DOI: 10.1088/0256-307X/29/9/095201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Effective Opacity for Gold-Doped Foam Plasmas
HUANG Cheng-Wu**, SONG Tian-Ming, ZHAO Yang, ZHU Tuo, SHANG Wan-Li, XIONG Gang, ZHANG Ji-Yan, YANG Jia-Min, JIANG Shao-En
Research Center of Laser Fusion, China Academy of Engineering Physics, PO Box 919-986, Mianyang 621900
Cite this article:   
HUANG Cheng-Wu, SONG Tian-Ming, ZHAO Yang et al  2012 Chin. Phys. Lett. 29 095201
Download: PDF(519KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Radiation flow through gold-doped hydrocarbon foam is investigated and a model is presented to calculate effective opacity for an inhomogeneous, pressure-equilibrated gold/foam mixture based on the Levermore–Pomraning method for binary stochastic media. The effective opacity dependance on the size of the gold particles and the foam temperature are studied. The results suggest that when the mixture temperature is lower than 250 eV, the opacity difference between the 5 μm particle mix case and the atomic mix case is large enough to induce a significant discrepancy in radiation transport, which is confirmed by the hydrodynamic simulation.
Received: 06 April 2012      Published: 01 October 2012
PACS:  52.57.-z (Laser inertial confinement)  
  52.25.Fi (Transport properties)  
  52.25.Os (Emission, absorption, and scattering of electromagnetic radiation ?)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/9/095201       OR      https://cpl.iphy.ac.cn/Y2012/V29/I9/095201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUANG Cheng-Wu
SONG Tian-Ming
ZHAO Yang
ZHU Tuo
SHANG Wan-Li
XIONG Gang
ZHANG Ji-Yan
YANG Jia-Min
JIANG Shao-En
[1] Pomraning G C 1990 Laser Part. Beams 8 741
[2] Boisse P 1990 Astron. Astrophys. 228 483
[3] Peltoniemi J I 1993 J. Quant. Spectrosc. Radiat. Transf. 50 655
[4] Davis A B, Mineev-Weinstein M B 2011 J. Quant. Spectrosc. Radiat. Transf. 112 632
[5] Keiter P, Gunderson M, Foster J, Rosen P, Comley A, Taylor M and Perry T 2008 Phys. Plasmas 15 056901
[6] Rosen P A, Foster J M, Taylor M J, Keiter P A, Smith C C, Finke J R, Gunderson M and Perry T S 2007 Astrophys. Space. Sci. 307 213
[7] Levermore C D, Pomraning G C, Sanzo D L and Wong J 1986 J. Math. Phys. 27 2526
[8] Pomraning G C 1996 Adv. Nucl. Sci. Technol. 24 47
[9] Smith C C 2003 J. Quant. Spectrosc. Radiat. Transf. 81 451
[10] Vanderhaegan D 1988 J. Quant. Spectrosc. Radiat. Transf. 39 333
[11] Olson G L, Miller D S, Larsen E W and Morel J E 2006 J. Quant. Spectrosc. Radiat. Transf. 101 269
Related articles from Frontiers Journals
[1] Huan Zheng, Qian Chen, Baoqing Meng, Junsheng Zeng, Baolin Tian. On the Nonlinear Growth of Multiphase Richtmyer–Meshkov Instability in Dilute Gas-Particles Flow[J]. Chin. Phys. Lett., 2020, 37(1): 095201
[2] Meng Li, Wen-Hua Ye. Successive Picket Drive for Mitigating the Ablative Richtmyer–Meshkov Instability[J]. Chin. Phys. Lett., 2019, 36(2): 095201
[3] ZHANG Pin-Liang, TANG Xiu-Zhang, LI Ye-Jun, WANG Zhao, TIAN Bao-Xian, YIN Qian, LU Ze, XIANG Yi-Huai, GAO Zhi-Xing, LI Jing, HU Feng-Ming, GONG Zi-Zheng. Direct Laser-Driven Quasi-Isentropic Compression on HEAVEN-I Laser[J]. Chin. Phys. Lett., 2015, 32(07): 095201
[4] LI Zhi-Chao, **, ZHENG Jian, JIANG Xiao-Hua, WANG Zhe-Bin, YANG Dong, ZHANG Huan, LI San-Wei, WANG Feng, PENG Xiao-Shi, YIN Qiang, ZHU Fang-Hua, GUO Liang, YUAN Peng, LIU Shen-Ye, DING Yong-Kun . Methods of Generation and Detailed Characterization of Millimeter-Scale Plasmas Using a Gasbag Target[J]. Chin. Phys. Lett., 2011, 28(12): 095201
[5] ZHENG Huan, WANG An-Ting, XU Li-Xin, MING Hai. Spectral Analysis using Linearly Chirped Gaussian Pulse Stacking[J]. Chin. Phys. Lett., 2009, 26(7): 095201
[6] WU Zheng-Wei, ZHANG Wen-Lu, LI Ding, YANG Wei-Hong. Effect of Magnetic Field and Equilibrium Flow on Rayleigh-Taylor Instability[J]. Chin. Phys. Lett., 2004, 21(10): 095201
Viewed
Full text


Abstract