Chin. Phys. Lett.  2012, Vol. 29 Issue (8): 088702    DOI: 10.1088/0256-307X/29/8/088702
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Modulation of Amyloid-β Conformation by Charge State of N-Terminal Disordered Region
XI Wen-Hui, LI Wen-Fei**, WANG Wei
National Laboratory of Solid State Microstructure, and Department of Physics, Nanjing University, Nanjing 210093
Cite this article:   
Download: PDF(658KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on molecular dynamics simulations, we show that variations of the charge states of the histidines, which are the main effects of pH-value change and metal binding, can lead to a drastic change of the intra-peptide interactions of the segment 17–42 and the conformational distribution of the monomeric amyloid-β (Aβ). Since we already knew that the conformational distribution of monomeric Aβ can largely affect Aβ fibrillar aggregation, our results suggest that the pH value change and metal binding can affect the Aβ aggregation by much more complex mechanism than just affecting the inter-peptide interactions. To fully understand the mechanism of metal binding and pH-value induced Aβ aggregation, we also need to consider their effects on the conformational distribution of monomeric Aβ.
Received: 03 May 2012      Published: 31 July 2012
PACS:  87.15.nr (Aggregation)  
  87.15.-v (Biomolecules: structure and physical properties)  
  31.15.xv (Molecular dynamics and other numerical methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/8/088702       OR      https://cpl.iphy.ac.cn/Y2012/V29/I8/088702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Selkoe D J 2001 Physiol. Rev. 81 741
[2] Hardy J and Selkoe D J 2002 Science 297 353
[3] Laferla F M, Green K N and Oddo S 2007 Nat. Rev. Neurosci. 8 499
[4] Luhrs T et al 2005 Proc. Natl. Acad. Sci. U.S.A. 102 17342
[5] Tycko R 2011 Annu. Rev. Phys. Chem. 62 279
[6] Wood G P F, Rothlisberger U 2011 J. Chem. Theor. Comput. 7 1552
[7] Straub J E and Thirumalai D 2011 Annu. Rev. Phys. Chem. 62 437
[8] Rauk A 2009 Chem. Soc. Rev. 38 2698
[9] Zhang Z, Shi Y and Liu H 2003 Biophys. J. 84 3583
[10] Chen C and Xiao Y 2010 J. Comput. Chem. 31 1368
[11] Khandogin J and Brooks C L 2007 Proc. Natl. Acad. Sci. U.S.A. 104 16880
[12] Li W F et al 2007 J. Phys. Chem. B 111 13814
[13] Zheng J et al 2007 Biophys. J. 93 3046
[14] O'brien E P et al 2009 J. Phys. Chem. B 113 14421
[15] Ma K et al 1999 J. Am. Chem. Soc. 121 8698
[16] Klajnert B, Cladera J and Bryszewska M 2006 Biomacromolecules 7 2186
[17] Peralvarez-Marin A, Barth A and Graslund A 2008 J. Mol. Biol. 379 589
[18] Drago D, Bolognin S and Zatta P 2008 Curr. Alzheimer Res. 5 500
[19] Jing Y Q and Han K L 2010 Expert. Opin. Drug Discov. 5 33
[20] Tougu V, Tiiman A and Palumaa P 2011 Metallomics. 3 250
[21] Miller Y, Ma B Y and Nussinov R 2010 Proc. Natl. Acad. Sci. U.S.A. 107 9490
[22] Case D A et al 2010 Amber (San Francisco: University of California) p 11
[23] Duan Y et al 2003 J. Comput. Chem. 24 1999
[24] Sugita Y and Okamoto Y 1999 Chem. Phys. Lett. 314 141
[25] Zhou R H 2004 J. Mol. Graph. 22 451
[26] Zhang J, Qin M and Wang W 2006 Proteins 62 672
[27] Li W, Zhang J and Wang W 2007 Proteins 67 338
[28] Li W F, Zhang J, Wang J and Wang W 2008 J. Am. Chem. Soc. 130 892
[29] Li W F, Qin M, Tie Z X and Wang W 2011 Phys. Rev. E 84
[30] Qiu D, Shenkin P S, Hollinger F P and Still W C 1997 J. Phys. Chem. A 101 3005
[31] Ryckaert J P, Ciccotti G and Berendsen H J C 1977 J. Comput. Phys. 23 327
[32] Srinivasan R and Rose G D 1999 Proc. Natl. Acad. Sci. U.S.A. 96 14258
Viewed
Full text


Abstract