Chin. Phys. Lett.  2012, Vol. 29 Issue (8): 088103    DOI: 10.1088/0256-307X/29/8/088103
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Superhydrophilic and Wetting Behavior of TiO2 Films and their Surface Morphologies
WANG Wei1, ZHANG Da-Wei1**, TAO Chun-Xian1, WANG Qi1, WANG Wen-Na1, HUANG Yuan-Shen1, NI Zheng-Ji1, ZHUANG Song-Lin1, LI Hai-Xia2, MEI Ting3
1Engineering Research Center of Optical Instrument and System (Ministry of Education), Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093
2Department of Information Science and Technology, Shandong University of Politics Science and Law, Jinan 250014
3Laboratory of Nanophotonic Functional Materials and Devices, Institute of Optoelectronic Materials and Technology, South China Normal University, Guangzhou 510631
Cite this article:   
Download: PDF(4336KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract TiO2 films, showing superhydrophilic behavior, are prepared by electron beam evaporation. Atomic force microscopy and the contact angle measurement were performed to characterize the morphology and wetting behavior of the TiO2 films. Most studies attribute the wetting behavior of TiO2 surfaces to their physical characteristics rather than surface chemistry. These physical characteristics include surface morphology, roughness, and agglomerate size. We arrange these parameters in order of effectiveness. Surface morphologies are demonstrated to be the most important. TiO2 films with particular morphologies show superhydrophilic behavior without external stimuli, and these thin films also show stable anti-contamination properties during cyclical wetting and drying.
Received: 16 February 2012      Published: 31 July 2012
PACS:  81.05.Rm (Porous materials; granular materials)  
  81.40.Ef (Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)  
  68.60.Wm (Other nonelectronic physical properties)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/8/088103       OR      https://cpl.iphy.ac.cn/Y2012/V29/I8/088103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Dai S Y and Wang K J 2003 Chin. Phys. Lett. 20 953
[2] Lan X H, Yang S Q, Zou Y, Wang Z A and Huang N K 2007 Chin. Phys. Lett. 24 3567
[3] Zorba V, Chen X B and Mao S S 2010 Appl. Phys. Lett. 96 093702
[4] Law W S, Lam S W, Gan W Y, Scott J and Amal R 2009 Thin Solid Films 517 5425
[5] Zubkov T, Stahl D, Thompson T L, Panayotov D, Diwald O and Yates J T 2005 J. Phys. Chem. B 109 15454
[6] Cassie A B D and Baxter S 1944 Trans. Faraday Soc. 40 546
[7] Wenzel R N 1936 Ind. Eng. Chem. 28 988
[8] Barthlott W and Neinhuis C 1997 Planta 202 1
[9] Zhai L, Cebeci F ? Cohen R E and Rubner M F 2004 Nano Lett. 4 1349
[10] Feng X J and Jiang L 2006 Adv. Mater. 18 3063
[11] Dorrer C and Rühe J 2008 Langmuir 24 1959
[12] Bormashenko E, Bormashenko Y, Whyman G, Pogreb R and Stanevsky O 2006 J. Colloid Interface Sci. 302 308
[13] Wenzel R N 1949 J. Phys. Chem. 53 1466
[14] Stevens N, Priest C I, Sedev R and Ralston J 2003 Langmuir 19 3272
[15] Borras A and Gonza?lez-Elipe A R 2010 Langmuir 26 15875
[16] Song S, Jing L Q, Li S D, Fu H G and Luan Y B 2008 Mater. Lett. 62 3503
[17] Katsumataa K I, Nakajimaa A, Shiotaa T, Yoshidab N, Watanabeb T, Kameshimaa Y and Okadaa K 2006 J. Photochem. Photobiol. A: Chem. 180 75
[18] Sinha S K, Sirota E B and Garoff S 1988 Phys. Rev. B 38 2297
Related articles from Frontiers Journals
[1] Jienan Shen, Zhijun Wang, Lilin Wang, Lin Jia, Junjie Li, Xin Lin, Jincheng Wang. Strengthening Porous PVA with TiO$_{2}$ Structure by an Ice-Templating Method[J]. Chin. Phys. Lett., 2018, 35(8): 088103
[2] Qin-Wei Ma, Yahya Sandali, Rui-Nan Zhang, Fang-Yuan Ma, Hong-Tao Wang, Shao-Peng Ma, Qing-Fan Shi. Characterization of Elastic Modulus of Granular Materials in a New Designed Uniaxial Oedometric System[J]. Chin. Phys. Lett., 2016, 33(03): 088103
[3] M. Chitra, K. Uthayarani, N. Rajasekaran, N. Neelakandeswari, E. K. Girija, D. Pathinettam Padiyan. Rice Husk Templated Mesoporous ZnO Nanostructures for Ethanol Sensing at Room Temperature[J]. Chin. Phys. Lett., 2015, 32(07): 088103
[4] PAN Bei-Cheng, SHI Qing-Fan, SUN Gang. Experimental Observation of Quasi-Static Avalanche Process of a Granular Pile[J]. Chin. Phys. Lett., 2013, 30(12): 088103
[5] XU You-Sheng, WU Bin, ZHENG You-Qu, FAN Jin-Tu. Simultaneous Recovery of Porosity (Porosity Seed) and Total Heat Transmission in Fibrous Porous Materials[J]. Chin. Phys. Lett., 2013, 30(6): 088103
[6] GE Bao-Liang, SHI Qing-Fan, RAM Chand, HE Jian-Feng, MA Shao-Peng. The Nature of Stresses in a Giant Static Granular Column[J]. Chin. Phys. Lett., 2013, 30(4): 088103
[7] REN Cheng, YANG Xing-Tuan, SUN Yan-Fei. Porous Structure Analysis of the Packed Beds in a High-Temperature Reactor Pebble Bed Modules Heat Transfer Test Facility[J]. Chin. Phys. Lett., 2013, 30(2): 088103
[8] LI Rui, XIAO Ming, LI Zhi-Hao, ZHANG Duan-Ming. The Effects of Heating Mechanism on Granular Gases with a Gaussian Size Distribution[J]. Chin. Phys. Lett., 2012, 29(12): 088103
[9] LI Rui**, ZHANG Duan-Ming, LI Zhi-Hao. Size Segregation in Rapid Flows of Inelastic Particles with Continuous Size Distributions[J]. Chin. Phys. Lett., 2012, 29(1): 088103
[10] LI Rui**, ZHANG Duan-Ming, LI Zhi-Hao . Velocity Distributions in Inelastic Granular Gases with Continuous Size Distributions[J]. Chin. Phys. Lett., 2011, 28(9): 088103
[11] SUN Qi-Cheng**, JI Shun-Ying . A Pair Correlation Function Characterizing the Anisotropy of Force Networks[J]. Chin. Phys. Lett., 2011, 28(6): 088103
[12] XU Ai-Guo, ZHANG Guang-Cai, LI Hua, ZHU Jian-Shi. Comparison Study on Characteristic Regimes in Shocked Porous Materials[J]. Chin. Phys. Lett., 2010, 27(2): 088103
[13] JIN Yan-Fang, XIONG Chun-Yang, FANG Jing, FERRARI Mauro. Characterization of Wave Dispersion in Viscoelastic Cellular Assemblies by Doublet Mechanics[J]. Chin. Phys. Lett., 2009, 26(8): 088103
[14] JIANG Shao-Ji, YU Meng-Ying, WEI Yu-Wei, TANG Ji-Jia. Monte Carlo Simulation of Sculptured Thin Films Growth of SiO2 on Si for Applications[J]. Chin. Phys. Lett., 2008, 25(12): 088103
[15] ZHAO Jian, LI Shui-Xiang. Numerical Simulation of Random Close Packings in Particle Deformation from Spheres to Cubes[J]. Chin. Phys. Lett., 2008, 25(11): 088103
Viewed
Full text


Abstract