Chin. Phys. Lett.  2012, Vol. 29 Issue (8): 087301    DOI: 10.1088/0256-307X/29/8/087301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Energy Band Structure of the Electron Gas in Periodic Quantum Wells
MAO Sheng-Hong, MA Yu-Ting, XUE Ju-Kui**
Key Laboratory of Atomic & Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070
Cite this article:   
Download: PDF(608KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The energy band structure and current density of electron gas with an exchange-correlation effect in periodic quantum wells are discussed. It is found that the energy band shows a swallowtail structure at the boundary of the first Brillouin zone when the electron exchange-correlation effect is presented and the average electron density is smaller than a critical value. The energy band structure is closely related to the current density of the system.
Received: 24 April 2012      Published: 31 July 2012
PACS:  73.21.Fg (Quantum wells)  
  71.10.Ca (Electron gas, Fermi gas)  
  71.45.Gm (Exchange, correlation, dielectric and magnetic response functions, plasmons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/8/087301       OR      https://cpl.iphy.ac.cn/Y2012/V29/I8/087301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Manfredi G and Hervieux P A 2007 Appl. Phys. Lett. 91 061108
[2] Heyman J N et al 1998 Appl. Phys. Lett. 72 644
[3] Gusev G M et al 2002 Phys. Rev. B 65 205316
[4] Georgakilas A et al 1997 Mater. Sci. Eng. B 44 383
[5] Anderson R L 1962 Solid-State Electron. 5 341
[6] Chandra W et al 2009 J. Phys. D: Appl. Phys. 42 055504
[7] Craciun N I et al 2008 Phys. Rev. Lett. 100 056601
[8] Appenzeller J et al 2004 Phys. Rev. Lett. 92 048301
[9] Hwang C et al 2008 J. Phys. D: Appl. Phys. 41 159802
[10] Li W and Wang Y N 2007 Phys. Rev. B 75 193407
[11] Chandra W and Ang L k 2010 Appl. Phys. Lett. 96 183501
[12] Crouseilles N et al 2008 Phys. Rev. B 78 155412
[13] Brey L et al 1990 Phys. Rev. B 42 1240
[14] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[15] Deveaud B et al 1987 Phys. Rev. Lett. 58 2582
[16] Diakonov D et al 2002 Phys. Rev. A 66 013604
Related articles from Frontiers Journals
[1] Zhong-Qiu Xing, Yong-Jie Zhou, Yu-Huai Liu, Fang Wang. Reduction of Electron Leakage of AlGaN-Based Deep Ultraviolet Laser Diodes Using an Inverse-Trapezoidal Electron Blocking Layer[J]. Chin. Phys. Lett., 2020, 37(2): 087301
[2] O. Ozturk, E. Ozturk, S. Elagoz. Nonlinear Optical Rectification, Second and Third Harmonic Generations in Square-Step and Graded-Step Quantum Wells under Intense Laser Field[J]. Chin. Phys. Lett., 2019, 36(6): 087301
[3] Yi-Fu Wang, Mussaab I. Niass, Fang Wang, Yu-Huai Liu. Reduction of Electron Leakage in a Deep Ultraviolet Nitride Laser Diode with a Double-Tapered Electron Blocking Layer[J]. Chin. Phys. Lett., 2019, 36(5): 087301
[4] Zhi-Hui Wang, Xiao-Lan Wang, Jun-Lin Liu, Jian-Li Zhang, Chun-Lan Mo, Chang-Da Zheng, Xiao-Ming Wu, Guang-Xu Wang, Feng-Yi Jiang. Effect of Green Quantum Well Number on Properties of Green GaN-Based Light-Emitting Diodes[J]. Chin. Phys. Lett., 2018, 35(8): 087301
[5] Xi-xia Tao, Chun-lan Mo, Jun-lin Liu, Jian-li Zhang, Xiao-lan Wang, Xiao-ming Wu, Long-quan Xu, Jie Ding, Guang-xu Wang, Feng-yi Jiang. Electroluminescence from the InGaN/GaN Superlattices Interlayer of Yellow LEDs with Large V-Pits Grown on Si (111)[J]. Chin. Phys. Lett., 2018, 35(5): 087301
[6] Ai-Xing Li, Chun-Lan Mo, Jian-Li Zhang, Xiao-Lan Wang, Xiao-Ming Wu, Guang-Xu Wang, Jun-Lin Liu, Feng-Yi Jiang. Effect of Mg-Preflow for p-AlGaN Electron Blocking Layer on the Electroluminescence of Green LEDs with V-Shaped Pits[J]. Chin. Phys. Lett., 2018, 35(2): 087301
[7] Lai Wang, Xiao Meng, Jung-Hoon Song, Tae-Soo Kim, Seung-Young Lim, Zhi-Biao Hao, Yi Luo, Chang-Zheng Sun, Yan-Jun Han, Bing Xiong, Jian Wang, Hong-Tao Li. A Method to Obtain Auger Recombination Coefficient in an InGaN-Based Blue Light-Emitting Diode[J]. Chin. Phys. Lett., 2017, 34(1): 087301
[8] Shaffa Almansour, Hassen Dakhlaoui, Emane Algrafy. Effect of Si $\delta$-Doping on the Linear and Nonlinear Optical Absorptions and Refractive Index Changes in InAlN/GaN Single Quantum Wells[J]. Chin. Phys. Lett., 2016, 33(02): 087301
[9] Xiao-Guang Wu. Electron-Elastic-Wave Interaction in a Two-Dimensional Topological Insulator[J]. Chin. Phys. Lett., 2016, 33(02): 087301
[10] BAHSHELI Guliyev, AKBAR Barati Chiyaneh, NOVRUZ Bashirov, GENBER Kerimli. Effects of Nonparabolicity on Electron Thermopower of Size-Quantized Semiconductor Films[J]. Chin. Phys. Lett., 2015, 32(07): 087301
[11] GAO Han-Chao, YIN Zhi-Jun. Theoretical and Experimental Optimization of InGaAs Channels in GaAs PHEMT Structure[J]. Chin. Phys. Lett., 2015, 32(06): 087301
[12] CHEN Xi-Ren, SONG Yu-Xin, ZHU Liang-Qing, QI Zhen, ZHU Liang, ZHA Fang-Xing, GUO Shao-Ling, WANG Shu-Min, SHAO Jun. Bismuth Effects on Electronic Levels in GaSb(Bi)/AlGaSb Quantum Wells Probed by Infrared Photoreflectance[J]. Chin. Phys. Lett., 2015, 32(06): 087301
[13] Emine Ozturk, Ismail Sokmen. Nonlinear Intersubband Transitions in Square and Graded Quantum Wells Modulated by Intense Laser Field[J]. Chin. Phys. Lett., 2014, 31(12): 087301
[14] CHEN Jian, XU Huai-Zhe. Directional Plasmon Filtering in a Two-Dimensional Electron Gas Embedded in High-Index Crystallographic Planes[J]. Chin. Phys. Lett., 2014, 31(03): 087301
[15] WANG Gang, YE Hui-Qi, SHI Zhen-Wu, WANG Wen-Xin, MARIE Xavier, BALOCCHI Andrea, AMAND Thierry, LIU Bao-Li. Spin Dynamics in (111) GaAs/AlGaAs Undoped Asymmetric Quantum Wells[J]. Chin. Phys. Lett., 2012, 29(9): 087301
Viewed
Full text


Abstract