Chin. Phys. Lett.  2012, Vol. 29 Issue (11): 114703    DOI: 10.1088/0256-307X/29/11/114703
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Non-Newtonian Power-Law Fluid Flow over a Shrinking Sheet
FANG Tie-Gang1**, TAO Hua2, ZHONG Yong-Fang3
1Mechanical and Aerospace Engineering Department, North Carolina State University, 911 Oval Drive-Campus Box 7910 Raleigh, NC 27695, USA
2470 Oak Grove Dr, Apt 111 Santa Clara, CA 95054, USA
3School of Engineering Penn State Erie, The Behrend College, 5101 Jordan Road Erie, PA 16563, USA
Cite this article:   
FANG Tie-Gang, TAO Hua, ZHONG Yong-Fang 2012 Chin. Phys. Lett. 29 114703
Download: PDF(492KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The boundary layer flow of power-law fluids over a shrinking sheet with mass transfer is revisited. Closed-form analytical solutions are found and presented for special cases. One of the presented solutions has an algebraic decay behavior. These analytical solutions might offer valuable insight into the nonlinear boundary layer flow for power-law fluids.
Received: 04 May 2012      Published: 28 November 2012
PACS:  47.15.Cb (Laminar boundary layers)  
  47.50.-d (Non-Newtonian fluid flows)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/11/114703       OR      https://cpl.iphy.ac.cn/Y2012/V29/I11/114703
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FANG Tie-Gang
TAO Hua
ZHONG Yong-Fang
[1] Miklavcic M and Wang C Y 2006 Q. Appl. Math. 64 283
[2] Hayat T et al 2007 J. Appl. Mech. 74 1165
[3] Fang T et al 2008 Comput. Math. Appl. 56 3088
[4] Fang T 2008 Int. J. Heat Mass Transfer 51 5838
[5] Fang T, Zhang J and Yao S 2009 Chin. Phys. Lett. 26 014703
[6] Yao B and Chen J 2009 Appl. Math. Comput. 215 1146
[7] Cortell R 2010 Appl. Math. Comput. 217 4086
[8] Fan T, Xu H and Pop I 2010 Int. Commun. Heat Mass Transfer 37 1440
[9] Shit G C and Haldar R 2011 Appl. Math. Mech. 32 677
[10] Bhattacharyya K 2011 Int. Commun. Heat Mass Transfer 38 917
[11] Ali F M, Nazar R, Arifin N M and Pop I 2011 Int. J. Numer. Methods Fluids 67 1310
[12] Mahapatra T R, Nandy S K and Gupta A S 2012 Meccanica 47 1325
[13] Goldstein S 1965 J. Fluid Mech. 21 33
[14] Ishak A, Lok Y Y and Pop I 2012 Chem. Eng. Commun. 199 142
[15] Wilkinson W L 1960 Non-Newtonian Fluids (London: Pergamon)
[16] Andersson H I and Irgens F 1990 Encyclopedia Fluid Mechanics vol 9 Polymer Flow Engineering (Houston, Texas: Gulf Publishing)
Related articles from Frontiers Journals
[1] Tiegang Fang, Fujun Wang. Unsteady Liquid Film Flow with a Prescribed Free-Surface Velocity[J]. Chin. Phys. Lett., 2019, 36(1): 114703
[2] Tiegang Fang, Fujun Wang. Viscous Slip MHD Flow over a Moving Sheet with an Arbitrary Surface Velocity[J]. Chin. Phys. Lett., 2018, 35(10): 114703
[3] Yong Li, Zhen-Xiang Zhou, Xue-Mao Guan, Shang-Sheng Li, Ying Wang, Xiao-Peng Jia, Hong-An Ma. B–C Bond in Diamond Single Crystal Synthesized with h-BN Additive at High Pressure and High Temperature[J]. Chin. Phys. Lett., 2016, 33(02): 114703
[4] SHI Yan-Chao, LI Jia-Jun, LIU Hao, ZUO Yong-Gang, BAI Yang, SUN Zhan-Feng, MA Dian-Li, CHEN Guang-Chao. Nano-Crystalline Diamond Films Grown by Radio-Frequency Inductively Coupled Plasma Jet Enhanced Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2015, 32(08): 114703
[5] Adnan Saeed Butt, Asif Ali. Effects of Magnetic Field on Entropy Generation in Flow and Heat Transfer due to a Radially Stretching Surface[J]. Chin. Phys. Lett., 2013, 30(2): 114703
[6] Abdul Rehman, S. Nadeem. Mixed Convection Heat Transfer in Micropolar Nanofluid over a Vertical Slender Cylinder[J]. Chin. Phys. Lett., 2012, 29(12): 114703
[7] M. Erfanian Nakhchi, M. R. H. Nobari, H. Basirat Tabrizi. Non-Similarity Thermal Boundary Layer Flow over a Stretching Flat Plate[J]. Chin. Phys. Lett., 2012, 29(10): 114703
[8] Azeem Shahzad, Ramzan Ali, and Masood Khan. On the Exact Solution for Axisymmetric Flow and Heat Transfer over a Nonlinear Radially Stretching Sheet[J]. Chin. Phys. Lett., 2012, 29(8): 114703
[9] Swati Mukhopadhyay*. Heat Transfer Analysis of the Unsteady Flow of a Maxwell Fluid over a Stretching Surface in the Presence of a Heat Source/Sink[J]. Chin. Phys. Lett., 2012, 29(5): 114703
[10] M. Sajid, K. Mahmood, Z. Abbas. Axisymmetric Stagnation-Point Flow with a General Slip Boundary Condition over a Lubricated Surface[J]. Chin. Phys. Lett., 2012, 29(2): 114703
[11] Chandaneswar Midya*. Exact Solutions of Chemically Reactive Solute Distribution in MHD Boundary Layer Flow over a Shrinking Surface[J]. Chin. Phys. Lett., 2012, 29(1): 114703
[12] ZHANG Hui, FAN Bao-Chun**, CHEN Zhi-Hua . In-depth Study on Cylinder Wake Controlled by Lorentz Force[J]. Chin. Phys. Lett., 2011, 28(12): 114703
[13] Swati Mukhopadhyay . Heat Transfer in a Moving Fluid over a Moving Non-Isothermal Flat Surface[J]. Chin. Phys. Lett., 2011, 28(12): 114703
[14] FANG Tie-Gang*, ZHANG Ji, ZHONG Yong-Fang, TAO Hua . Unsteady Viscous Flow over an Expanding Stretching Cylinder[J]. Chin. Phys. Lett., 2011, 28(12): 114703
[15] Tiegang FANG**, Shanshan YAO . Viscous Swirling Flow over a Stretching Cylinder[J]. Chin. Phys. Lett., 2011, 28(11): 114703
Viewed
Full text


Abstract