FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Extraordinary Transmission through Fractal-Featured Metallic and Superconducting Films at Terahertz Frequency |
LIANG Lan-Ju 1, JIN Biao-Bing1**, ZHANG Qiu-Yi1, WU Jing-Bo1, BAO Yong-Jun2, JIA Tao1, JIA Xiao-Qing1, CAO Chun-Hai1, KANG Lin1, XU Wei-Wei1, CHEN Jian1, WU Pei-Heng1 |
1Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 2State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012
|
|
Cite this article: |
LIANG Lan-Ju, JIN Biao-Bing, ZHANG Qiu-Yi et al 2012 Chin. Phys. Lett. 29 114101 |
|
|
Abstract We report on fractal-featured square and ring-shaped apertures with a Sierpinski carpet pattern (SCP) on metallic and superconducting NbN films. Multiple extraordinary terahertz (THz) transmission peaks are studied in the transmission spectra using both THz time-domain spectroscopy and numerical simulation. The characteristic transmission peaks are found to be associated with the interaction of surface plasmon polaritons (SPPs) and localized surface plasmons (LSPs) for ring-shaped apertures. The effect of LSPs is less remarkable in the square apertures. For the superconducting NbN film, when the temperature is slightly lower than the critical transition temperature Tc, the peak magnitude of SPP resonances is most prominent due to the non-monotonic temperature dependence of kinetic inductance. These results provide a new way to design compact and efficient THz devices.
|
|
Received: 26 July 2012
Published: 28 November 2012
|
|
PACS: |
41.20.Jb
|
(Electromagnetic wave propagation; radiowave propagation)
|
|
74.25.-q
|
(Properties of superconductors)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
|
|
|
[1] Ebbesen T W et al 1998 Nature 391 667 [2] Wu D, Fang N, Sun C and Zhang X 2003 Appl. Phys. Lett. 83 201 [3] He X Y, Cao J C and Feng S L 2006 Chin. Phys. Lett. 23 2066 [4] Ye L F, Xu R M, Zhang Y and Lin W G 2011 Chin. Phys. Lett. 28 124102 [5] Xing Q R et al 2005 Chin. Phys. Lett. 22 1821 [6] Bao Y J et al 2008 Appl. Phys. Lett. 92 151902 [7] Lu X C and Zhang W L 2009 Appl. Phys. Lett. 94 181106 [8] Azad A K, Zhao Y G, Zhang W L and He M 2006 Opt. Lett. 31 2637 [9] Chang Y T et al 2008 Appl. Phys. Lett. 92 233109 [10] Sun M et al 2006 J. Appl. Phys. 100 024320 [11] Li J Y, Hua Y L, Fu J X and Li Z Y 2010 J. Appl. Phys. 107 073101 [12] Yang Y P, Singh R J and Zhang W L 2011 Opt. Lett. 36 2901 [13] Strelniker Y M 2007 Phys. Rev. B 76 085409 [14] Matsui T, Agrawal A and Nahata A 2007 Nature 446 517 [15] Liu H W et al 2003 Acta Phys. Sin. 53 3082 (in Chinese) [16] Bao Y J et al 2007 Appl. Phys. Lett. 90 251914 [17] Volpe G, Volpe G, Quidant R 2011 Opt. Express 19 3612 [18] Du J et al 2008 Supercond. Sci. Technol 21 125025 [19] Chen H T et al 2008 Opt. Express 16 7641 [20] Singh R J et al 2010 Appl. Phys. Lett. 97 071114 [21] Gu J Q et al 2010 Appl. Phys. Lett. 97 071102 [22] Tian Z et al 2010 Opt. Lett. 35 3586 [23] Tsiatmas A et al 2010 Appl. Phys. Lett. 97 071102 [24] Wu J B et al 2011 Opt. Express 19 1101 [25] Singh R J et al 2012 Nanophotonics 1 117 [26] Pendry J B, Moreno Martin and Garcia-Vidal F J 2004 Science 305 847 [27] Chiam S Y et al 2009 Appl. Phys. Lett. 94 064102 [28] Lu X C, Han J G and Zhang W L 2008 Appl. Phys. Lett. 92 121103 [29] Zhang C H et al 2012 Opt. Express 20 42 [30] Brorson S D et al 1994 Phys. Rev. B: Condens. Matter 49 6185 [31] Jin B B et al 2008 Physica C 468 861 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|