Chin. Phys. Lett.  2011, Vol. 28 Issue (6): 068701    DOI: 10.1088/0256-307X/28/6/068701
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Approach of Complex Networks for the Determination of Brain Death
SUN Wei-Gang1,2,, CAO Jian-Ting1,3, WANG Ru-Bin1**
1Institute for Cognitive Neurodynamics, School of Science, School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237
2School of Science, Hangzhou Dianzi University, Hangzhou 310018
3Department of Robotics, Saitama Institute of Technology, Saitama 369-0293, Japan
Cite this article:   
SUN Wei-Gang, CAO Jian-Ting, WANG Ru-Bin 2011 Chin. Phys. Lett. 28 068701
Download: PDF(423KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In clinical practice, brain death is the irreversible end of all brain activity. Compared to current statistical methods for the determination of brain death, we focus on the approach of complex networks for real-world electroencephalography in its determination. Brain functional networks constructed by correlation analysis are derived, and statistical network quantities used for distinguishing the patients in coma or brain death state, such as average strength, clustering coefficient and average path length, are calculated. Numerical results show that the values of network quantities of patients in coma state are larger than those of patients in brain death state. Our findings might provide valuable insights on the determination of brain death.
Keywords: 87.18.Sn      89.75.Hc     
Received: 18 November 2010      Published: 29 May 2011
PACS:  87.18.Sn (Neural networks and synaptic communication)  
  89.75.Hc (Networks and genealogical trees)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/6/068701       OR      https://cpl.iphy.ac.cn/Y2011/V28/I6/068701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Wei-Gang
CAO Jian-Ting
WANG Ru-Bin
[1] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[2] Zhou C S, Zemanová L, Zamora-Lopez G et al 2007 New J. Phys. 9 178
[3] Bullmore E and Sporns O 2009 Nature Rev. Neurosci. 10 186
[4] Bales M E and Johnson S B 2006 J. Biomed. Inform. 39 451
[5] Reijneveld J C, Ponten S C, Berendse H W and Stam C J 2007 Clin. Neurophysiol. 118 2317
[6] Watts D J and Strogatz S H 1998 Nature 393 440
[7] Sporns O and Zwi J D 2004 Neuroinformatics 2 145
[8] Barabási A L and Albert R 1999 Science 286 509
[9] Eguíluz V M, Chialvo D R, Cecchi G A et al 2005 Phys. Rev. Lett. 94 018102
[10] Liu Y, Liang M, Zhou Y et al 2008 Brain 131 945
[11] Dubois J M 2010 J. Med. Philos. 35 365
[12] Chen Z, Cao J T, Cao Y et al 2008 Cogn. Neurodyn. 2 257
[13] Cao J T and Chen Z 2007 International Conference on Cognitive Neurodynamics (Shanghai, China 17–21 November 2007) p 699
[14] Yang K, Shi Q W, Cao J T et al 2009 International Conference on Cognitive Neurodynamics (Hangzhou, China 15–19 November 2009) p 729
[15] Fang X L and Jiang Z L 2007 Acta Phys. Sin. 56 7330 (in Chinese)
[16] Barrat A, Barthélemy M, Pastor-Satorras R et al 2004 Proc. Nat. Acad. Sci. 101 3747
Related articles from Frontiers Journals
[1] QI Kai,TANG Ming**,CUI Ai-Xiang,FU Yan. The Slow Dynamics of the Zero-Range Process in the Framework of the Traps Model[J]. Chin. Phys. Lett., 2012, 29(5): 068701
[2] LIU Xu,XIE Zheng,YI Dong-Yun**. Community Detection by Neighborhood Similarity[J]. Chin. Phys. Lett., 2012, 29(4): 068701
[3] LI Ping, ZHANG Jie, XU Xiao-Ke, SMALL Michael. Dynamical Influence of Nodes Revisited: A Markov Chain Analysis of Epidemic Process on Networks[J]. Chin. Phys. Lett., 2012, 29(4): 068701
[4] XIE Zheng, YI Dong-Yun, OUYANG Zhen-Zheng, LI Dong. Hyperedge Communities and Modularity Reveal Structure for Documents[J]. Chin. Phys. Lett., 2012, 29(3): 068701
[5] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 068701
[6] REN Xue-Zao, YANG Zi-Mo, WANG Bing-Hong, ZHOU Tao. Mandelbrot Law of Evolving Networks[J]. Chin. Phys. Lett., 2012, 29(3): 068701
[7] ZHU Zi-Qi, JIN Xiao-Ling, HUANG Zhi-Long. Search for Directed Networks by Different Random Walk Strategies[J]. Chin. Phys. Lett., 2012, 29(3): 068701
[8] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 068701
[9] LI Jun, WU Jun**, LI Yong, DENG Hong-Zhong, TAN Yue-Jin** . Optimal Attack Strategy in Random Scale-Free Networks Based on Incomplete Information[J]. Chin. Phys. Lett., 2011, 28(6): 068701
[10] SHANG Yi-Lun . Local Natural Connectivity in Complex Networks[J]. Chin. Phys. Lett., 2011, 28(6): 068701
[11] CAO Xian-Bin, DU Wen-Bo, **, CHEN Cai-Long, ZHANG Jun . Effect of Adaptive Delivery Capacity on Networked Traffic Dynamics[J]. Chin. Phys. Lett., 2011, 28(5): 068701
[12] LI Jun, WU Jun**, LI Yong, DENG Hong-Zhong, TAN Yue-Jin** . Attack Robustness of Scale-Free Networks Based on Grey Information[J]. Chin. Phys. Lett., 2011, 28(5): 068701
[13] LI Ling**, JIN Zhen-Lan . Scale-Free Brain Networks Based on the Event-Related Potential during Visual Spatial Attention[J]. Chin. Phys. Lett., 2011, 28(4): 068701
[14] LIU Ai-Fen, XU Xiu-Lian, FU Chun-Hua, WANG Jian, HE Da-Ren** . Competition Ability Dependence on Uniqueness in General Cooperation-Competition Systems[J]. Chin. Phys. Lett., 2011, 28(2): 068701
[15] WEI Du-Qu**, LUO Xiao-Shu, CHEN Hong-Bin, ZHANG Bo . Random Long-Range Interaction Induced Synchronization in Coupled Networks of Inertial Ratchets[J]. Chin. Phys. Lett., 2011, 28(11): 068701
Viewed
Full text


Abstract