Chin. Phys. Lett.  2011, Vol. 28 Issue (6): 068503    DOI: 10.1088/0256-307X/28/6/068503
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Theoretical Explanation and Improvement to the Flare Model of Lithography Based on the Kirk Test
CHEN De-Liang, CAO Yi-Ping**, HUANG Zhen-Fen
Department of Opto-Electronics, Sichuan University, Chengdu 610065
Cite this article:   
CHEN De-Liang, CAO Yi-Ping, HUANG Zhen-Fen 2011 Chin. Phys. Lett. 28 068503
Download: PDF(565KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Kirk test has good precision for measuring stray light in optical lithography and is the usual method of measuring stray light. However, Kirk did not provide a theoretical explanation to his simulation model. We attempt to give Kirk's model a kind of theoretical explanation and a little improvement based on the model of point spread function of scattering and the theory of statistical optics. It is indicated by simulation that the improved model fits Kirk's measurement data better.
Keywords: 85.40.Hp      78.35.+c      78.68.+m     
Received: 24 December 2010      Published: 29 May 2011
PACS:  85.40.Hp (Lithography, masks and pattern transfer)  
  78.35.+c (Brillouin and Rayleigh scattering; other light scattering)  
  78.68.+m (Optical properties of surfaces)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/6/068503       OR      https://cpl.iphy.ac.cn/Y2011/V28/I6/068503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN De-Liang
CAO Yi-Ping
HUANG Zhen-Fen
[1] Mack C A 2003 Proc. SPIE 5040 151
[2] Lai K and Progler C 2001 Proc. SPIE 4346 1424
[3] Kim Y C, Bisschop P D and Vandeberghe G 2005 J. Microlith. Microfab. Microsyst. 41 15
[4] Goodman J W 1985 Statistical Optics (New York: John Wiley & Sons) p 361
[5] Shibuya M, Ezaki H, Fukui T et al 2004 Proc. SPIE 5377 1910
[6] Progler C and Wong A 2000 Proc. SPIE 4000 40
[7] Kerkhof M V, Boeij W D, Kok H et al 2004 Proc. SPIE 5377 1960
[8] Grassman A and Moritz H 1992 J. Vac. Sci. Technol. B 10 3008
[9] Fontaine B L, Daly T P, Chapman H N et al 1996 Proc. OSA TOPS on Extreme Ultraviolet Lithography 4 203
[10] Fontaine B L, Dusa M, Acheta A et al 2002 Proc. SPIE 4691 44
[11] Kirk J P1994 Proc. SPIE 2197 566
[12] Goodman J W 1985 Statistical Optics (New York: John Wiley & Sons) p 392
[13] Stearns D G, Gaines D P and Sweeney D W 1998 Appl. Opt. 84 1003
[14] Lin Z W, Xu X, Zhang X J and Fang G Y 2011 Chin. Phys. Lett. 28 014101
[15] Li H X, Liu C X, Chen X Y, Zhang M N and Cheng C F 2011 Chin. Phys. Lett. 28 024206
[16] James W V, Jerome B, Yorick T et al 2004 Proc. SPIE 5567 700
Related articles from Frontiers Journals
[1] M. Afshari Bavil,SUN Xiu-Dong*,HUANG Feng. Frequency Selective Propagation by Employing Fabry–Perot Nanocavities in a Subwavelength Double-slit Structure[J]. Chin. Phys. Lett., 2012, 29(4): 068503
[2] JIANG Ming, TANG Min-Jin, WU Hao, LI Yan-Jie, XIE Hui-Min. FIB Moiré Gratings and Their Application in the Measurement of Optical Fibers' Mechanical Properties[J]. Chin. Phys. Lett., 2012, 29(3): 068503
[3] SUN Hong-Guo**, ZHOU Zhong-Xiang, YUAN Cheng-Xun, YANG Wen-Long, WANG He. Structural, Electronic and Optical Properties of KTa0.5Nb0.5O3 Surface: A First-Principles Study[J]. Chin. Phys. Lett., 2012, 29(1): 068503
[4] LU Zhi-Xin, YU Li, **, LIU Bing-Can, , ZHANG Kai, SONG Gang, . Femtosecond Pulse Propagation in a Symmetric Gap Surface Plasmon Polariton Waveguide[J]. Chin. Phys. Lett., 2011, 28(8): 068503
[5] LIU Shi-Yuan, **, LIU Wei, WU Xiao-Fei . Fast Evaluation of Aberration-Induced Intensity Distribution in Partially Coherent Imaging Systems by Cross Triple Correlation[J]. Chin. Phys. Lett., 2011, 28(10): 068503
[6] SU Yu-Huan, SHI Jin-Wei, OUYANG Min, YANG Guo-Jian, LIU Da-He. Theoretical Analysis of the Critical Phenomena of a Brillouin Laser[J]. Chin. Phys. Lett., 2010, 27(7): 068503
[7] TIAN Dong-Bin, ZHANG Huai-Wu, WEN Qi-Ye, XIE Yun-Song, SONG Yuan-Qiang. Coupled THz Waveguide Utilizing Surface Plasmon Polaritons on Thin Dielectric Slab Sandwiched between Two Corrugated Metallic Claddings[J]. Chin. Phys. Lett., 2010, 27(4): 068503
[8] . Numerical Confirmation of Multi-Reflections of Light Inside a Subwavelength Metal Slit Structure[J]. Chin. Phys. Lett., 2010, 27(3): 068503
[9] LV Shi-Long, SONG Zhi-Tang, LIU Yan, FENG Song-Lin. Nanoscale Tapered Pt Bottom Electrode Fabricated by FIB for Low Power and Highly Stable Operations of Phase Change Memory[J]. Chin. Phys. Lett., 2010, 27(2): 068503
[10] PEI Xiao-Jiang, GUO Li-Wei, WANG Xiao-Hui, WANG Yang, JIA Hai-Qiang, CHEN Hong, ZHOU Jun-Ming. Enhanced Photoluminescence of InGaN/GaN Green Light-Emitting Diodes Grown on Patterned Sapphire Substrate[J]. Chin. Phys. Lett., 2009, 26(2): 068503
[11] ZHU Bo, WANG Zheng-Bin, YU Zhen-Zhong, ZHANG Qi, ZHAO Jun-Ming, FENG Yi-Jun, JIANG Tian,. Planar Metamaterial Microwave Absorber for all Wave Polarizations[J]. Chin. Phys. Lett., 2009, 26(11): 068503
[12] LV Shi-Long, SONG Zhi-Tang, ZHANG Ting, FENG Song-Lin. High Speed and Ultra-Low-Power Phase Change Line Cell Memory Based on SiSb Thin Films with Nanoscale Gap of Electrodes Less Than 100nm[J]. Chin. Phys. Lett., 2008, 25(11): 068503
[13] CHEN Dan, XIE Zhi-Qiang, WU Qian, ZHAO You-Yuan, LU Ming. Electroluminescence of Si Nanocrystal-Doped SiO2[J]. Chin. Phys. Lett., 2007, 24(8): 068503
[14] SHI Yuan-Yuan, TIAN Ke, LIN Bi-Xia, FU Zhu-Xi. Luminescence with Local Distribution and Its Possible Mechanism in Zinc Oxide Micro-Crystallites[J]. Chin. Phys. Lett., 2007, 24(8): 068503
[15] WANG Qing-Hua, LI Zhen-Hua, LAI Jian-Cheng, HE An-Zhi. A Polydisperse Sphere Model Describing the Propagation of Light in Biological Tissue[J]. Chin. Phys. Lett., 2007, 24(4): 068503
Viewed
Full text


Abstract