Chin. Phys. Lett.  2010, Vol. 27 Issue (11): 117801    DOI: 10.1088/0256-307X/27/11/117801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Inverted Bottom-Emission Organic Light Emitting Diode Using Two n-Doped Layers for the Enhanced Performance
CHENG Cui-Ran, CHEN Yu-Huan, QIN Da-Shan**, QUAN Wei, LIU Jin-Suo
Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130
Cite this article:   
CHENG Cui-Ran, CHEN Yu-Huan, QIN Da-Shan et al  2010 Chin. Phys. Lett. 27 117801
Download: PDF(556KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We fabricate an inverted bottom-emission organic light emitting diode (IBOLED) employing two n-doped layers, i.e., 5 nm lithium carbonate doped PTCDA (1:2 Li2CO3:PTCDA) with 5 nm Li2CO3 doped BCP (1:4 Li2CO3:BCP) on top, where PTCDA and BCP stand for 3, 4, 9, 10 perylenetetracarboxylic dianhydride and bathcuporine, respectively. Compared to the IBOED using a layer of 10 nm 1:4 Li2CO3:BCP, the one utilizing the two-layer combination of 5 nm 1:2 Li2CO3:PTCDA and 5 nm 1:4 Li2CO3:BCP shows decreasing operation voltage and thereby increasing power efficiency, mainly attributed to the higher electron conductivity of 1:2 Li2CO3:PTCDA than that of 1:4 Li2CO3:BCP. The mechanism of the electron transport through the interface of 1:2 Li2CO3:PTCDA and 1:4 Li2CO3:BCP is also discussed. We provide a simply and effective structure to enhance the current conduction for IBOLEDs.
Keywords: 78.60.Fi      72.80.Le     
Received: 12 April 2010      Published: 22 October 2010
PACS:  78.60.Fi (Electroluminescence)  
  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/11/117801       OR      https://cpl.iphy.ac.cn/Y2010/V27/I11/117801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHENG Cui-Ran
CHEN Yu-Huan
QIN Da-Shan
QUAN Wei
LIU Jin-Suo
[1] Zhou X, Pfeiffer M, Huang J S, Blochwitz-Nimoth J, Qin D S, Werner A, Drechesel J, Maennig B and Leo K 2002 Appl. Phys. Lett. 81 922
[2] Xiong T, Wang F X, Qiao X F and Ma D G 2008 Appl. Phys. Lett. 92 263305
[3] Chen S Y, Chu T Y, Chen J F, Su C Y and Chen C H 2006 Appl. Phys. Lett. 89 053518
[4] Chu T Y, Chen J F, Chen S Y and Chen C H 2006 Appl. Phys. Lett. 89 113502
[5] Yun Ch H, Cho H, Kang H, Lee Y M, Park Y and Yoo S 2009 Appl. Phys. Lett. 95 053301
[6] Gu G, Bulovic V, Burrows P E, Forrest S R and Thompson M E 1996 Appl. Phys. Lett. 68 2606
[7] Burrows P E, Gu G, Forrest S R, Vicenzi E P and Zhou T X 2000 J. Appl. Phys. 87 3080
[8] Hung L S and Tang C W 1999 Appl. Phys. Lett. 74 3209
[9] Parthasarathy G, Adachi C, Burrows P E and Forrest S R Appl. Phys. Lett. 76 2128
[10] Walzer K, Maennig B, Pfeiffer M and Leo K 2007 Chem. Rev. 107 1233
[11] Wuesten J, Ziegler C and Ertl T 2006 Phys. Rev. B 74 125205
[12] Parthasarathy G, Shen C, Kahn A and Forrest S R 2001 J. Appl. Phys. 89 4986
[13] Cao G H, Qin D S, Cao J S, Guan M, Zeng Y P and Li J M 2008 Chin. Phys. B 17 911
[14] Zhao Y Q, Huang C J, Ogundimu T and Lu Z H 2007 Appl. Phys. Lett. 91 103109
[15] Heiander M G, Wang Z B and Lu Z H 2008 Appl. Phys. Lett. 93 083311
[16] Bulovid V, Burrows P E, Forrest S R, Cronin J A and Thompson M E 1996 Chem. Phys. 210 1
[17] Zahn D R T, Gavrila G N and Salvan G 2007 Chem. Rev. 107 1161
[18] Yuan Y, Grozea D, Han S and Lu Z H 2004 Appl. Phys. Lett. 85 4959
[19] Hudej R, Zavrtanik M, Brownell J N and Bratina G 2001 Mater. Tehnol. 35 151
[20] Itomo K, Ogawa H and Shirota Y 1998 Appl. Phys. Lett. 72 636
[21] Cao G H, Qin D S, Guan M, Cao J S, Zeng Y P and Li J M 2007 Chin. Phys. Lett. 24 1380
[22] Xue J G, Rand B P, Uchida S and Forrest S R 2005 J. Appl. Phys. 98 124903
[23] Kahn A, Zhao W, Gao W Y, Vazquez H and Flores F 2006 Chem. Phys. 325 129
[24] Hill I G, Rajagopal A and Kahn A 1998 Appl. Phys. Lett. 73 662
Related articles from Frontiers Journals
[1] WANG Li-Guo**, ZHANG Huai-Wu, TANG Xiao-Li, LI Yuan-Xun, ZHONG Zhi-Yong. Charge Transport and Electrical Properties in Poly(3-hexylthiophene) Polymer Layers[J]. Chin. Phys. Lett., 2012, 29(1): 117801
[2] ZHAO Hong-Xia, ZHAO Hui**, CHEN Yu-Guang . Dynamical Process of Dissociation of Excitons in Polymer Chains with Impurities[J]. Chin. Phys. Lett., 2011, 28(9): 117801
[3] YIN Yang, RAN Guang-Zhao**, ZHANG Bin, QIN Guo-Gang** . Photo- and Electro-Luminescence at 1.54µm from Er3+ in SiC:Er2O3 Films and Structures[J]. Chin. Phys. Lett., 2011, 28(7): 117801
[4] LI Bi-Xin, CHEN Jiang-Shan, ZHAO Yong-Biao, MA Dong-Ge** . Frequency-Dependent Electrical Transport Properties of 4,4',4[J]. Chin. Phys. Lett., 2011, 28(5): 117801
[5] LIAN Jia-Rong**, NIU Fang-Fang, LIU Ya-Wei, ZENG Peng-Ju . Improved Hole-Blocking and Electron Injection Using a TPBI Interlayer at the Cathode Interface of OLEDs[J]. Chin. Phys. Lett., 2011, 28(4): 117801
[6] KONG Fang-Fang, LIU Cong-Cong, XU Jing-Kun**, JIANG Feng-Xing, LU Bao-Yang, YUE Rui-Rui, LIU Guo-Dong, WANG Jian-Min . Simultaneous Enhancement of Electrical Conductivity and Seebeck Coefficient of Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Films Treated with Urea[J]. Chin. Phys. Lett., 2011, 28(3): 117801
[7] CHEN Jun, FAN Guang-Han**, PANG-Wei, ZHENG Shu-Wen . Comparison of GaN-Based Light-Emitting Diodes by Using the AlGaN Electron-Blocking Layer and InAlN Electron-Blocking Layer[J]. Chin. Phys. Lett., 2011, 28(12): 117801
[8] JIANG Chun-Xia, YANG Xiao-Yan, ZHAO Kai, WU Xiao-Ming, YANG Li-Ying, CHENG Xiao-Man, WEI Jun, YIN Shou-Gen, ** . High Performance Polymer Field-Effect Transistors Based on Thermally Crosslinked Poly(3-hexylthiophene)[J]. Chin. Phys. Lett., 2011, 28(11): 117801
[9] FENG Lie-Feng**, LI Yang, LI Ding, WANG Cun-Da, ZHANG Guo-Yi, YAO Dong-Sheng, LIU Wei-Fang, XING Peng-Fei . Frequency Response of Modulated Electroluminescence of Light-Emitting Diodes[J]. Chin. Phys. Lett., 2011, 28(10): 117801
[10] LIANG Chun-Jun, ZOU Hui, HE Zhi-Qun, ZHANG Chun-Xiu, LI Dan, WANG Yong-Sheng. Polymer Light-Emitting Diode Using Conductive Polymer as the Anode Layer[J]. Chin. Phys. Lett., 2010, 27(9): 117801
[11] LI Rong-Hua, MENG Wei-Min, PENG Ying-Quan, MA Chao-Zhu, WANG Run-Sheng, XIE Hong-Wei, WANG Ying. Numerical Study on Open-Circuit Voltage of Single Layer Organic Solar Cells with Schottky Contacts: Effects of Molecular Energy Levels, Temperature and Thickness[J]. Chin. Phys. Lett., 2010, 27(8): 117801
[12] QIAO Xian-Feng, CHEN Jiang-Shan, MA Dong-Ge. Comparative Study on Hole Transport in N,N'-bis(naphthalen-1-yl)-N,N'- bis(pheny) Benzidine and 4,4',4''-tri(N-carbazolyl)triphenylamine[J]. Chin. Phys. Lett., 2010, 27(8): 117801
[13] LI Zhong-Liang, WU Zhao-Xin, JIAO Bo, MAO Gui-Lin, HOU Xun. Capacitance of Organic Schottky Diodes Based on Copper Phthalocyanine (CuPc)[J]. Chin. Phys. Lett., 2010, 27(6): 117801
[14] LU Bao-Yang, LIU Cong-Cong, LU Shan, XU Jing-Kun, JIANG Feng-Xing, LI Yu-Zhen, ZHANG Zhuo. Thermoelectric Performances of Free-Standing Polythiophene and Poly(3-Methylthiophene) Nanofilms[J]. Chin. Phys. Lett., 2010, 27(5): 117801
[15] LEI Tong, WANG Xiao-Ping, WANG Li-Jun, LV Cheng-Rui, ZHANG Shi, ZHU Yu-Zhuan. Electroluminescence from Multilayered Diamond/CeF3/SiO2 Films[J]. Chin. Phys. Lett., 2010, 27(4): 117801
Viewed
Full text


Abstract