Chin. Phys. Lett.  2009, Vol. 26 Issue (7): 070201    DOI: 10.1088/0256-307X/26/7/070201
Topology Identification of General Dynamical Network with Distributed Time Delays
WU Zhao-Yan, FU Xin-Chu
Department of Mathematics, Shanghai University, Shanghai 200444
Download: PDF(336KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract General dynamical networks with distributed time delays are studied. The topology of the networks are viewed as unknown parameters, which need to be identified. Some auxiliary systems (also called the network estimators) are designed to achieve this goal. Both linear feedback control and adaptive strategy are applied in designing these network estimators. Based on linear matrix inequalities and the Lyapunov function method, the sufficient condition for the achievement of topology identification is obtained. This method can also better monitor the switching topology of dynamical networks. Illustrative examples are provided to show the effectiveness of this method.
Keywords: 02.40.Pc      64.60.Aq      05.45.Xt     
Received: 20 February 2009      Published: 02 July 2009
PACS:  02.40.Pc (General topology) (Networks)  
  05.45.Xt (Synchronization; coupled oscillators)  
Cite this article:   
WU Zhao-Yan, FU Xin-Chu 2009 Chin. Phys. Lett. 26 070201
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
WU Zhao-Yan
FU Xin-Chu
[1] Watts D J and Strogatz S H 1998 Nature 393 440
[2]Girvan M and Newman M E J 2002 Proc. Natl. Acad. Sci.USA 99 7821
[3] Gronlund A and Holme P 2004 Phys. Rev. E 70 036108
[4] Serrano M and Bogu\~{n\'{a M 2003 Phys. Rev. E 68 015101(R)
[5] Albert R, Jeong H and Barab\'{asi A L 1999 Nature 401 130
[6] Williams R J and Martinez N D 2000 Nature 404 180
[7] Li C P, Sun W G and Kurths J 2007 Phys. Rev. E 76 046204
[8] Lu W L and Chen T P 2004 Phys. D 198 148
[9] Lu J H, Yu X H and Chen G R 2004 Physica A 334 281
[10] Wang K, Teng Z D and Jiang H J 2008 Physica A 387 631
[11] Creveling D R, Jeanne J M and Abarbanel H D I 2008 Phys. Lett. A 372 2043
[12] Yu W W and Cao J D 2007 Physica A 375 467
[13] Ge Z M and Yang C H 2007 Physica D 231 87
[14] Yu D C, Righero M and Kocarev L 2006 Phys. Rev.Lett. 97 188701
[15] Zhou J and Lu J A 2007 Physica A 386 481
[16] Wu X Q 2008 Physica A 387 997
[17] Liao T L and Lin S H 1999 J. Franklin Institute 336 925
[18] Lu W L, Atay F M and Jost J 2008 Eur. Phys. J. B 63 399
[19] Li C H and Yang S Y 2008 Int. J. Bifur. Chaos 18 (7) 2039
[20] Lu J H and Chen G R 2002 Int. J. Bifur. Chaos 12 659
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 070201
[2] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 070201
[3] ZHAO Qing-Bai,ZHANG Xiao-Fei,SUI Dan-Ni,ZHOU Zhi-Jin,CHEN Qi-Cai,TANG Yi-Yuan,**. The Efficiency of a Small-World Functional Brain Network[J]. Chin. Phys. Lett., 2012, 29(4): 070201
[4] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 070201
[5] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 070201
[6] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 070201
[7] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 070201
[8] JIANG Hui-Jun, WU Hao, HOU Zhong-Huai** . Explosive Synchronization and Emergence of Assortativity on Adaptive Networks[J]. Chin. Phys. Lett., 2011, 28(5): 070201
[9] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 070201
[10] FENG Cun-Fang**, WANG Ying-Hai . Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach[J]. Chin. Phys. Lett., 2011, 28(12): 070201
[11] GUO Xiao-Yong, *, LI Jun-Min . Projective Synchronization of Complex Dynamical Networks with Time-Varying Coupling Strength via Hybrid Feedback Control[J]. Chin. Phys. Lett., 2011, 28(12): 070201
[12] SONG Yan-Li . Frequency Effect of Harmonic Noise on the FitzHugh–Nagumo Neuron Model[J]. Chin. Phys. Lett., 2011, 28(12): 070201
[13] WEI Du-Qu**, LUO Xiao-Shu, CHEN Hong-Bin, ZHANG Bo . Random Long-Range Interaction Induced Synchronization in Coupled Networks of Inertial Ratchets[J]. Chin. Phys. Lett., 2011, 28(11): 070201
[14] LI Mei-Sheng**, ZHANG Hong-Hui, ZHAO Yong, SHI Xia . Synchronization of Coupled Neurons Controlled by a Pacemaker[J]. Chin. Phys. Lett., 2011, 28(1): 070201
[15] SUN Zhi-Qiang, XIE Ping, LI Wei, WANG Peng-Ye. Spiking Regularity and Coherence in Complex Hodgkin-Huxley Neuron Networks[J]. Chin. Phys. Lett., 2010, 27(8): 070201
Full text