Chin. Phys. Lett.  2009, Vol. 26 Issue (7): 070202    DOI: 10.1088/0256-307X/26/7/070202
GENERAL |
Structural Equation and Mei Conserved Quantity of Mei Symmetry for Appell Equations with Redundant Coordinates
XIE Guang-Xi1, CUI Jin-Chao1, ZHANG Yao-Yu2, JIA Li-Qun1
1School of Science, Jiangnan University, Wuxi 2141222Electric and Information Engineering College, Pingdingshan University, Pingdingshan 467002
Cite this article:   
XIE Guang-Xi, CUI Jin-Chao, ZHANG Yao-Yu et al  2009 Chin. Phys. Lett. 26 070202
Download: PDF(250KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Structural equations and Mei conserved quantity of Mei symmetry for Appell equations in a holonomic system with redundant coordinates are studied. Some aspects, including the differential equations of motion, the definition and the criterion of Mei symmetry, the form of structural equations and Mei conserved quantity of Mei symmetry of Appell equations for a holonomic system with redundant coordinates, are also investigated. Finally, an example is given to illustrate the application of the results.
Keywords: 02.20.Sy      11.30.-j      45.20.Jj     
Received: 08 January 2009      Published: 02 July 2009
PACS:  02.20.Sy  
  11.30.-j (Symmetry and conservation laws)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/7/070202       OR      https://cpl.iphy.ac.cn/Y2009/V26/I7/070202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIE Guang-Xi
CUI Jin-Chao
ZHANG Yao-Yu
JIA Li-Qun
[1] Noether A E 1918 Nachr. Akad. Wiss. G\"{ottingen.Math. Phys. KI I$\!$I 235
[2] Vujanovi\'c B 1978 Int. J. Nonlinear Mech. 13185
[3] Lutzky M 1979 J. Phys. A: Math. Gen. 12 973
[4] Lutzky M 1979 Phys. Lett. 72 A 86
[5] Lutzky M 1979 Phys. Lett. 75 A 8
[6] Vujanovi\'c B 1986 Acta Mech. 65 63
[7] Mei F X 2000 J. Beijing Institute of Technology 9 120 (in Chinese)
[8] Luo S K 2002 Chin. Phys. Lett. 19 449
[9] Luo S K 2003 Chin. Phys. Lett. 20 597
[10] Zheng S W, Xie J and Jia L Q 2006 Chin. Phys. Lett. 23 2924
[11] Zhang Y 2005 Acta Phys. Sin. 54 2980 (inChinese)
[12] Jia L Q and Zheng S W 2006 Acta Phys. Sin. 553829 (in Chinese)
[13] Luo S K 2007 Chin. Phys. Lett. 24 2463
[14] Luo S K 2007 Chin. Phys. Lett. 24 3017
[15] Jia L Q, Zheng S W and Zhang Y Y 2007 Acta Phys.Sin. 56 5575 (in Chinese)
[16] Luo S K,Zhang Y F et al 2008 Advances in the Studyof Dynamics of Constrained Systems (Beijing: Science Press) (inChinese)
[17] Jia L Q, Xie J F and Luo S K 2008 Chin. Phys. 17 1560
[18] Fang J H, Liu Y K and Zhang X N 2008 Chin. Phys. 17 1962
[19] Jia L Q, Luo S K and Zhang Y Y 2008 Acta Phys. Sin. 57 2006 (in Chinese)
[20] Cai J L, Luo S K and Mei F X 2008 Chin. Phys. 17 3170
[21] Jia L Q, Cui J C, Luo S K and Yang X F 2009 Chin.Phys. Lett. 26 030303
[22] Mei F X 1991 Advanced Analytical Mechanics(Beijing: Beijing Institute of Technology Press) p 131 (in Chinese)
[23] Mei F X 2001 Chin. Phys. 10 177
[24] Li R J, QiaoY F and Meng J 2002 Acta Phys. Sin. 51 1 (in Chinese)
[25] Luo S K 2002 Acta Phys. Sin. 51 712 (inChinese)
[26] Luo S K 2002 J.Changsha Univ. 16 1 (inChinese)
[27] Jia L Q, Zhang Y Y and Zheng S W 2007 J. YunnanUniv. 29 589 (in Chinese)
[28] Jia L Q, Xie J F and Zheng S W 2008 Chin. Phys. 17 17
Related articles from Frontiers Journals
[1] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 070202
[2] JIANG Zhi-Wei . A New Model for Quark Mass Matrix[J]. Chin. Phys. Lett., 2011, 28(6): 070202
[3] XU Wei, YUAN Bo, AO Ping, ** . Construction of Lyapunov Function for Dissipative Gyroscopic System[J]. Chin. Phys. Lett., 2011, 28(5): 070202
[4] YAN Lu, SONG Jun-Feng, QU Chang-Zheng** . Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems[J]. Chin. Phys. Lett., 2011, 28(5): 070202
[5] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 070202
[6] WANG Peng . Perturbation to Noether Symmetry and Noether adiabatic Invariants of Discrete Mechanico-Electrical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 070202
[7] XIA Li-Li . Poisson Theory and Inverse Problem in a Controllable Mechanical System[J]. Chin. Phys. Lett., 2011, 28(12): 070202
[8] HUANG Wei-Li, CAI Jian-Le** . Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation[J]. Chin. Phys. Lett., 2011, 28(11): 070202
[9] NI Jun . Unification of General Relativity with Quantum Field Theory[J]. Chin. Phys. Lett., 2011, 28(11): 070202
[10] ZHANG Yi** . The Method of Variation of Parameters for Solving a Dynamical System of Relative Motion[J]. Chin. Phys. Lett., 2011, 28(10): 070202
[11] MEI Feng-Xiang, CUI Jin-Chao, CHANG Peng. A Field Integration Method for a Weakly Nonholonomic System[J]. Chin. Phys. Lett., 2010, 27(8): 070202
[12] XIA Li-Li, CAI Jian-Le. Symmetry of Lagrangians of Nonholonomic Controllable Mechanical Systems[J]. Chin. Phys. Lett., 2010, 27(8): 070202
[13] TIAN Jing, QIU Hai-Bo, CHEN Yong,. Nonlocal Measure Synchronization in Coupled Bosonic Josephson Junctions[J]. Chin. Phys. Lett., 2010, 27(7): 070202
[14] ZHENG Shi-Wang, XIE Jia-Fang, WANG Jian-Bo, CHEN Xiang-Wei. Another Conserved Quantity by Mei Symmetry of Tzénoff Equation for Non-Holonomic Systems[J]. Chin. Phys. Lett., 2010, 27(3): 070202
[15] XIE Yin-Li, JIA Li-Qun. Special Lie–Mei Symmetry and Conserved Quantities of Appell Equations Expressed by Appell Fun[J]. Chin. Phys. Lett., 2010, 27(12): 070202
Viewed
Full text


Abstract