[1] | Barsoum M W 2000 Prog. Solid State Chem. 28 201 | The MN+1AXN phases: A new class of solids
[2] | Eklund P et al. 2010 Thin Solid Films 518 1851 | The M+1AX phases: Materials science and thin-film processing
[3] | Sun Z M 2011 Int. Mater. Rev. 56 143 | Progress in research and development on MAX phases: a family of layered ternary compounds
[4] | Barsoum M W et al. 2001 Am. Sci. 89 334 | The MAX Phases: Unique New Carbide and Nitride Materials
[5] | Barsoum M W et al. 1996 J. Am. Ceram. Soc. 79 1953 | Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2
[6] | Ingason A S, Dahlqvist M, and Rosen J 2016 J. Phys.: Condens. Matter 28 433003 | Magnetic MAX phases from theory and experiments; a review
[7] | Novoselova I P et al. 2018 Sci. Rep. 8 2637 | Large uniaxial magnetostriction with sign inversion at the first order phase transition in the nanolaminated Mn2GaC MAX phase
[8] | Dahlqvist M et al. 2016 Phys. Rev. B 93 014410 | Magnetically driven anisotropic structural changes in the atomic laminate
[9] | Boucher R, Berger O, and Leyens C 2016 Surf. Eng. 32 172 | Magnetic properties of bulk and thin film Cr–Al–C compounds
[10] | Salikhov R et al. 2015 Mater. Res. Lett. 3 156 | Magnetic Anisotropy in the (Cr0.5 Mn0.5 )2 GaC MAX Phase
[11] | Liu Z, Waki T, Tabata Y, and Nakamura H 2014 Phys. Rev. B 89 054435 | Mn-doping-induced itinerant-electron ferromagnetism in GeC
[12] | Li Y F, Liu J Z, Liu W H, Zhu X Y, and Wen H H 2015 Philos. Mag. 95 2831 | Suppression of a possible spin-density wave transition in Cr2 GaN by Ge doping
[13] | Liu Z, Waki T, Tabata Y, Yuge K, Nakamura H, and Watanabe I 2013 Phys. Rev. B 88 134401 | Magnetic ground state of the -phase nitride Cr GaN
[14] | Rietveld H M 1969 J. Appl. Crystallogr. 2 65 | A profile refinement method for nuclear and magnetic structures
[15] | Rodríguez-Carvajal J 1993 Phys. B: Condens. Matter 192 55 | Recent advances in magnetic structure determination by neutron powder diffraction
[16] | Wills A S 2000 Physica B 276–278 680 | A new protocol for the determination of magnetic structures using simulated annealing and representational analysis (SARAh)
[17] | Ren Q Y, Hutchison W D, Wang J L, Studer A J, and Campbell S J 2018 Chem. Mater. 30 1324 | Magnetic and Structural Transitions Tuned through Valence Electron Concentration in Magnetocaloric Mn(Co 1– x Ni x )Ge
[18] | Akito S et al. 2018 Nat. Phys. 14 1119 | Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal
[19] | Manna K et al. 2018 Phys. Rev. X 8 041045 | From Colossal to Zero: Controlling the Anomalous Hall Effect in Magnetic Heusler Compounds via Berry Curvature Design
[20] | Guin S N et al. 2019 NPG Asia Mater. 11 16 | Anomalous Nernst effect beyond the magnetization scaling relation in the ferromagnetic Heusler compound Co2MnGa
[21] | Vilanova V E, Stryganyuk G, Schneider H, Felser C, and Jakob G 2011 Appl. Phys. Lett. 99 132509 | Exploring Co2 MnAl Heusler compound for anomalous Hall effect sensors
[22] | Li P G et al. 2020 Nat. Commun. 11 3476 | Giant room temperature anomalous Hall effect and tunable topology in a ferromagnetic topological semimetal Co2MnAl
[23] | Chang G Q et al. 2016 Sci. Rep. 6 38839 | Room-temperature magnetic topological Weyl fermion and nodal line semimetal states in half-metallic Heusler Co2TiX (X=Si, Ge, or Sn)
[24] | Wang Z J et al. 2016 Phys. Rev. Lett. 117 236401 | Time-Reversal-Breaking Weyl Fermions in Magnetic Heusler Alloys
[25] | Liu C et al. 2021 Sci. Chin. Phys. Mech. & Astron. 64 217062 | Spin excitations and spin wave gap in the ferromagnetic Weyl semimetal Co3Sn2S2
[26] | Liu C et al. 2021 Sci. Chin. Phys. Mech. & Astron. 64 257511 | Anisotropic magnetoelastic response in the magnetic Weyl semimetal Co3Sn2S2
[27] | Itoh S et al. 2016 Nat. Commun. 7 11788 | Weyl fermions and spin dynamics of metallic ferromagnet SrRuO3
[28] | Jenni K et al. 2019 Phys. Rev. Lett. 123 017202 | Interplay of Electronic and Spin Degrees in Ferromagnetic : Anomalous Softening of the Magnon Gap and Stiffness
[29] | Xu Y F et al. 2020 Nature 586 702 | High-throughput calculations of magnetic topological materials
[30] | Wang P Y, Ge J, Li J H, Liu Y Z, Xu Y, and Wang J 2021 Innovation 2 100098 | Intrinsic magnetic topological insulators
[31] | Bernevig B A, Felser C, and Beidenkopf H 2022 Nature 603 41 | Progress and prospects in magnetic topological materials
[32] | Wang H et al. 2020 Sci. Chin. Phys. Mech. & Astron. 63 287411 | Investigation of point-contact Andreev reflection on magnetic Weyl semimetal Co3Sn2S2
[33] | Xie X C 2021 Sci. Chin. Phys. Mech. & Astron. 64 217061 | Spin waves in magnetic Weyl semimetals
[34] | Yan B H 2021 Sci. Chin. Phys. Mech. & Astron. 64 217063 | Weyl monopoles dance with the spin waves
[35] | Cai Z W et al. 2020 Phys. Rev. B 104 L020402 | Topological magnon insulator spin excitations in the two-dimensional ferromagnet
[36] | Li J, Feng J S, Wang P S, Kan E J, and Xiang H J 2021 Sci. Chin. Phys. Mech. & Astron. 64 286811 | Nature of spin-lattice coupling in two-dimensional CrI3 and CrGeTe3