[1] | Kitaev Yu A et al. 1997 Russ. Math. Surv. 52 1191 | Quantum computations: algorithms and error correction
[2] | Aharonov D et al. 2006 Phys. Rev. Lett. 96 050504 | Fault-Tolerant Quantum Computation with Long-Range Correlated Noise
[3] | Duan L M and Guo G C 1997 Phys. Rev. Lett. 79 1953 | Preserving Coherence in Quantum Computation by Pairing Quantum Bits
[4] | Lidar D A et al. 1998 Phys. Rev. Lett. 81 2594 | Decoherence-Free Subspaces for Quantum Computation
[5] | Khodjasteh K et al. 2005 Phys. Rev. Lett. 95 180501 | Fault-Tolerant Quantum Dynamical Decoupling
[6] | Maze J R et al. 2008 Nature 455 644 | Nanoscale magnetic sensing with an individual electronic spin in diamond
[7] | Balasubramanian G et al. 2008 Nature 455 648 | Nanoscale imaging magnetometry with diamond spins under ambient conditions
[8] | Blok M S et al. 2014 Nat. Phys. 10 189 | Manipulating a qubit through the backaction of sequential partial measurements and real-time feedback
[9] | Groen J P et al. 2013 Phys. Rev. Lett. 111 090506 | Partial-Measurement Backaction and Nonclassical Weak Values in a Superconducting Circuit
[10] | Pfender M et al. 2019 Nat. Commun. 10 594 | High-resolution spectroscopy of single nuclear spins via sequential weak measurements
[11] | Shang Y X et al. 2019 Chin. Phys. Lett. 36 086201 | Magnetic Sensing inside a Diamond Anvil Cell via Nitrogen-Vacancy Center Spins *
[12] | Wang P et al. 2021 Chin. Phys. Lett. 38 010301 | Classical-Noise-Free Sensing Based on Quantum Correlation Measurement