[1] | Wang Q H et al 2012 Nat. Nanotechnol. 7 699 | Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
[2] | Chhowalla M et al 2013 Nat. Chem. 5 263 | The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets
[3] | Xu K et al 2016 Nanoscale 8 16802 | Synthesis, properties and applications of 2D layered M III X VI (M = Ga, In; X = S, Se, Te) materials
[4] | Huang W et al 2016 CrystEngComm 18 3968 | 2D layered group IIIA metal chalcogenides: synthesis, properties and applications in electronics and optoelectronics
[5] | Xu M, Liang T, Shi M and Chen H 2013 Chem. Rev. 113 3766 | Graphene-Like Two-Dimensional Materials
[6] | Feng W, Zheng W, Cao W and Hu P 2014 Adv. Mater. 26 6587 | Back Gated Multilayer InSe Transistors with Enhanced Carrier Mobilities via the Suppression of Carrier Scattering from a Dielectric Interface
[7] | Bandurin D A et al 2017 Nat. Nanotechnol. 12 223 | High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe
[8] | Mudd G W et al 2013 Adv. Mater. 25 5714 | Tuning the Bandgap of Exfoliated InSe Nanosheets by Quantum Confinement
[9] | Zhuang H L and Hennig R G 2013 Chem. Mater. 25 3232 | Single-Layer Group-III Monochalcogenide Photocatalysts for Water Splitting
[10] | Hu T, Zhou J and Dong J 2017 Phys. Chem. Chem. Phys. 19 21722 | Strain induced new phase and indirect–direct band gap transition of monolayer InSe
[11] | Ding Y M et al 2017 Nanoscale 9 14682 | Enhancement of hole mobility in InSe monolayer via an InSe and black phosphorus heterostructure
[12] | Yan F et al 2017 Nanotechnology 28 27LT01 | Fast, multicolor photodetection with graphene-contacted p -GaSe/ n -InSe van der Waals heterostructures
[13] | Wu Z B et al 2018 Chin. Phys. B 27 077302 | Electronic properties of silicene in BN/silicene van der Waals heterostructures
[14] | He Y et al 2019 J. Phys. D 52 015304 | Two-dimensional g-C 3 N 4 /InSe heterostructure as a novel visible-light photocatalyst for overall water splitting: a first-principles study
[15] | He X et al 2016 Appl. Phys. Lett. 109 173105 | Strain engineering in monolayer WS 2 , MoS 2 , and the WS 2 /MoS 2 heterostructure
[16] | Ju L et al 2018 Appl. Surf. Sci. 434 365 | DFT investigation on two-dimensional GeS/WS2 van der Waals heterostructure for direct Z-scheme photocatalytic overall water splitting
[17] | Kumar R, Das D and Singh A K 2018 J. Catal. 359 143 | C2N/WS2 van der Waals type-II heterostructure as a promising water splitting photocatalyst
[18] | Wang G et al 2018 J. Phys. D 51 025109 | Hybrid density functional study on the photocatalytic properties of AlN/MoSe 2 , AlN/WS 2 , and AlN/WSe 2 heterostructures
[19] | Coleman J N et al 2011 Science 331 568 | Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials
[20] | PereaL ópez N et al 2013 Adv. Funct. Mater. 23 5511 | Photosensor Device Based on Few-Layered WS 2 Films
[21] | Zhuang H L and Hennig R G 2013 J. Phys. Chem. C 117 20440 | Computational Search for Single-Layer Transition-Metal Dichalcogenide Photocatalysts
[22] | Ovchinnikov D et al 2014 ACS Nano 8 8174 | Electrical Transport Properties of Single-Layer WS 2
[23] | Yang Y et al 2015 Adv. Funct. Mater. 25 6199 | Vertically Aligned WS 2 Nanosheets for Water Splitting
[24] | Pesci F M et al 2017 ACS Catal. 7 4990 | MoS 2 /WS 2 Heterojunction for Photoelectrochemical Water Oxidation
[25] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
[26] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple
[27] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 | From ultrasoft pseudopotentials to the projector augmented-wave method
[28] | Ferreira L G, Marques M and Teles L K 2008 Phys. Rev. B 78 125116 | Approximation to density functional theory for the calculation of band gaps of semiconductors
[29] | Klimeš J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131 | Van der Waals density functionals applied to solids
[30] | Toroker M C et al 2011 Phys. Chem. Chem. Phys. 13 16644 | First principles scheme to evaluate band edge positions in potential transition metal oxide photocatalysts and photoelectrodes
[31] | Saha S, Sinha T P and Mookerjee A 2000 Phys. Rev. B 62 8828 | Electronic structure, chemical bonding, and optical properties of paraelectric
[32] | Qiao J et al 2014 Nat. Commun. 5 4475 | High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus
[33] | Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272 | VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data
[34] | Rigosi A F et al 2016 Phys. Rev. B 94 075440 | Electronic band gaps and exciton binding energies in monolayer transition metal dichalcogenide alloys probed by scanning tunneling and optical spectroscopy
[35] | Yun W S et al 2012 Phys. Rev. B 85 033305 | Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H- semiconductors ( Mo, W; S, Se, Te)
[36] | Kang J et al 2013 Appl. Phys. Lett. 102 012111 | Band offsets and heterostructures of two-dimensional semiconductors
[37] | Amin B, Kaloni T P and Schwingenschlögl U 2014 RSC Adv. 4 34561 | Strain engineering of WS 2 , WSe 2 , and WTe 2
[38] | Zeng F, Zhang W B and Tang B Y 2015 Chin. Phys. B 24 097103 | Electronic structures and elastic properties of monolayer and bilayer transition metal dichalcogenides MX 2 ( M = Mo, W; X = O, S, Se, Te): A comparative first-principles study
[39] | Debbichi L, Eriksson O and Lebègue S 2015 J. Phys. Chem. Lett. 6 3098 | Two-Dimensional Indium Selenides Compounds: An Ab Initio Study
[40] | Peng Q et al 2017 Catal. Sci. Technol. 7 2744 | Computational mining of photocatalysts for water splitting hydrogen production: two-dimensional InSe-family monolayers
[41] | Jiang Z et al 2017 Phys. Rev. Lett. 118 266401 | Scaling Universality between Band Gap and Exciton Binding Energy of Two-Dimensional Semiconductors
[42] | Kang P et al 2017 2D Mater. 4 045014 |
[43] | Qiao J et al 2018 Sci. Bull. 63 159 | Few-layer Tellurium: one-dimensional-like layered elementary semiconductor with striking physical properties