[1] | Sun S and Salvaggio C 2013 IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 6 1440 | Aerial 3D Building Detection and Modeling From Airborne LiDAR Point Clouds
[2] | Jakubiec A and Reinhart C F 2013 Sol. Energy 93 127 | A method for predicting city-wide electricity gains from photovoltaic panels based on LiDAR and GIS data combined with hourly Daysim simulations
[3] | Luo S, Wang C, Xi X et al 2014 Opt. Express 22 5106 | Estimating FPAR of maize canopy using airborne discrete-return LiDAR data
[4] | Schulien J A, Behrenfeld M J, Hair J W et al 2017 Opt. Express 25 13577 | Vertically- resolved phytoplankton carbon and net primary production from a high spectral resolution lidar
[5] | Wei G, Shalei S, Bo Z et al 2012 ISPRS J. Photogramm. Remote Sens. 69 1 | Multi-wavelength canopy LiDAR for remote sensing of vegetation: Design and system performance
[6] | Hakala T, Suomalainen J, Kaasalainen S et al 2012 Opt. Express 20 7119 | Full waveform hyperspectral LiDAR for terrestrial laser scanning
[7] | Li W, Niu Z, Sun G et al 2016 Opt. Express 24 4771 | Deriving backscatter reflective factors from 32-channel full-waveform LiDAR data for the estimation of leaf biochemical contents
[8] | Bruggisser M, Roncat A, Schaepman M E et al 2017 Remote Sens. Environ. 196 28 | Retrieval of higher order statistical moments from full-waveform LiDAR data for tree species classification
[9] | Wallace A M, Ye J, Krichel N J et al 2010 EURASIP J. Adv. Signal Process. 2010 896708 | Full Waveform Analysis for Long-Range 3D Imaging Laser Radar
[10] | Wallace A M, McCarthy A, Nichol C J et al 2013 IEEE Trans. Geosci. Remote Sens. 52 4942 | Design and Evaluation of Multispectral LiDAR for the Recovery of Arboreal Parameters
[11] | Degnan J 2016 Remote Sens. 8 958 | Design and performance of an airborne multikilohertz, photon-counting microlaser altimeter
[12] | Mallet C and Bretar F 2009 ISPRS J. Photogramm. Remote Sens. 64 1 | Full-waveform topographic lidar: State-of-the-art
[13] | Zwally H J, Schutz B, Abdalati W et al 2002 J. Geodynamics 34 405 | ICESat's laser measurements of polar ice, atmosphere, ocean, and land
[14] | Li H, Chen S, You L et al 2016 Opt. Express 24 3535 | Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging
[15] | Bao Z, Liang Y, Wang Z et al 2014 Appl. Opt. 53 3908 | A 1024×8 700 ps time-gated SPAD line sensor for laser Raman spectroscopy and LIBS in space and rover-based planetary exploration
[16] | Antolovic I M, Bruschini C and Charbon E 2018 Opt. Express 26 22234 | The gigavision camera
[17] | Ren X, Connolly P W R, Halimi A et al 2018 Opt. Express 26 5541 | High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor
[18] | Kirmani A, Venkatraman D, Shin D et al 2014 Science 343 58 | Simulation of 3D laser radar systems
[19] | O'Toole M, Lindell D B and Wetzstein G 2018 Nature 555 338 | Confocal non-line-of-sight imaging based on the light-cone transform
[20] | Swatantran A, Tang H, Barrett T et al 2016 Sci. Rep. 6 28277 | Rapid, High-Resolution Forest Structure and Terrain Mapping over Large Areas using Single Photon Lidar
[21] | Warburton R E, McCarthy A, Wallace A M et al 2007 Opt. Lett. 32 2266 | Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength
[22] | Maccarone A, McCarthy A, Ren X et al 2015 Opt. Express 23 33911 | Underwater depth imaging using time-correlated single-photon counting
[23] | McCarthy A, Ren X, Frera A D et al 2013 Opt. Express 21 22098 | Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector
[24] | Xia H, Shentu G, Shangguan M et al 2015 Opt. Lett. 40 1579 | Long-range micro-pulse aerosol lidar at 15 μm with an upconversion single-photon detector
[25] | Ren X, Altmann Y, Tobin R et al 2018 Opt. Express 26 30146 | Wavelength-time coding for multispectral 3D imaging using single-photon LiDAR
[26] | Nie S, Wang C, Xi X et al 2018 Opt. Express 26 A520 | Estimating the vegetation canopy height using micro-pulse photon-counting LiDAR data
[27] | Buller G and Wallace A 2007 IEEE J. Sel. Top. Quantum Electron. 13 1006 | Ranging and Three-Dimensional Imaging Using Time-Correlated Single-Photon Counting and Point-by-Point Acquisition
[28] | Ren M, Gu X, Liang Y et al 2011 Opt. Express 19 13497 | Laser ranging at 1550 nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector
[29] | Liang Y, Huang J, Ren M et al 2014 Opt. Express 22 4662 | 1550-nm time-of-flight ranging system employing laser with multiple repetition rates for reducing the range ambiguity
[30] | Li Z, Wu E, Pang C et al 2017 Opt. Express 25 10189 | Multi-beam single-photon-counting three-dimensional imaging lidar
[31] | McCarthy A, Krichel N J, Gemmell N R et al 2013 Opt. Express 21 8904 | Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection
[32] | Tobin R, Halimi A, McCarthy A et al 2017 Opt. Eng. 57 031303 |
[33] | Steinvall O, Sjöqvist L and Henriksson M 2012 Proc. SPIE 8375 83750C | SPIE Proceedings
[34] | Henriksson M, Larsson H, Grönwall C et al 2016 Opt. Eng. 56 031204 | Continuously scanning time-correlated single-photon-counting single-pixel 3-D lidar
[35] | Harding D, Dabney P, Abshire J et al 2010 NASA Earth Sci. Techno. Forum 2010 22 |
[36] | Markus T, Neumann T, Martino A et al 2017 Remote Sens. Environ. 190 260 | The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation
[37] | Hiskett P A, Parry C S, McCarthy A et al 2008 Opt. Express 16 13685 | A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates
[38] | Krichel N J, McCarthy A, Collins R J et al 2010 Proc. SPIE 7681 768108 | SPIE Proceedings
[39] | Du B, Pang C, Wu D et al 2018 Sci. Rep. 8 4198 | High-speed photon-counting laser ranging for broad range of distances