CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
High-Pressure Phase Transitions of Cubic Y$_{2}$O$_{3}$ under High Pressures by In-situ Synchrotron X-Ray Diffraction |
Sheng Jiang1,2**, Jing Liu3, Xiao-Dong Li3, Yan-Chun Li3, Shang-Ming He1,2, Ji-Chao Zhang1,2 |
1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201203 2Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 3Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
|
|
Cite this article: |
Sheng Jiang, Jing Liu, Xiao-Dong Li et al 2019 Chin. Phys. Lett. 36 046103 |
|
|
Abstract High-pressure phase transitions of cubic Y$_{2}$O$_{3}$ are investigated using in situ synchrotron x-ray diffraction in a diamond anvil cell up to 36.3 GPa. The pressure-induced phase transitions of cubic Y$_{2}$O$_{3}$, which display apparent inconsistencies in previous studies, are verified to be from a cubic phase to a monoclinic phase and further to a hexagonal phase at 11.7 and 21.6 GPa, respectively. The hexagonal Y$_{2}$O$_{3}$ displays noticeable anisotropic compressibility due to its layered structure and it is stable up to the highest pressure in the present study. A third-order Birch–Murnaghan fit based on the observed pressure-volume data yields zero pressure bulk moduli of 180(3), 196(7) and 177(7) GPa for cubic, monoclinic and hexagonal phases, respectively.
|
|
Received: 06 December 2018
Published: 23 March 2019
|
|
PACS: |
61.50.-f
|
(Structure of bulk crystals)
|
|
61.50.Ks
|
(Crystallographic aspects of phase transformations; pressure effects)
|
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
61.05.cp
|
(X-ray diffraction)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11775292, 11104307 and U1530134, the Natural Science Foundation of Shanghai under Grant No 18ZR1448100, and the Shanghai Sailing Program under Grant No 17YF1423600. |
|
|
[1] | Ogawa T, Otani N, Yokoi T et al 2018 Phys. Chem. Chem. Phys. 20 16518 | [2] | Jarrige I, Yamaoka H, Rueff J P et al 2013 Phys. Rev. B 87 115107 | [3] | Grave D A, Schmitt M P, Robinson J A et al 2014 Surf. Coat. Technol. 242 68 | [4] | Warshaw I and Roy R 1961 J. Phys. Chem. 65 2048 | [5] | Yusa H, Tsuchiya T, Sata N et al 2009 Inorg. Chem. 48 7537 | [6] | Hao J, Li Y W, Wang J S et al 2010 J. Phys. Chem. C 114 16750 | [7] | Liu B, Yao M G, Liu B B et al 2011 J. Phys. Chem. C 115 4546 | [8] | Jiang S, Liu J, Bai L G et al 2018 AIP Adv. 8 025019 | [9] | Foex M and Traverse J P 1966 Rev. Int. High Temp. Refract. 3 429 | [10] | Zinkevich M 2007 Prog. Mater. Sci. 52 597 | [11] | Guo Q X, Zhao Y S, Jiang C et al 2007 Inorg. Chem. 46 6164 | [12] | Lonappan D, Chandra Shekar N V, Ravindran T R et al 2010 Mater. Chem. Phys. 120 65 | [13] | Meyer C, Sanchez J P, Thomasson J et al 1995 Phys. Rev. B 51 12187 | [14] | Jiang S, Liu J, Lin C L et al 2010 J. Appl. Phys. 108 083541 | [15] | Lin C M, Wu K T, Hung T L et al 2010 Solid State Commun. 150 1564 | [16] | Liu D, Lei W W, Li Y W et al 2009 Inorg. Chem. 48 8251 | [17] | Ovsyannikov S V, Bykova E, Bykov M et al 2015 J. Appl. Phys. 118 165901 | [18] | Jiang S, Liu J, Lin C L et al 2013 Solid State Commun. 169 37 | [19] | Jiang S, Liu J, Li X D et al 2011 J. Appl. Phys. 110 013526 | [20] | Husson E, Proust C, Gillet P et al 1999 Mater. Res. Bull. 34 2085 | [21] | Ren X T, Yan X Z, Yu Z H et al 2017 J. Alloys Compd. 725 941 | [22] | Zhang F X, Lang M, Wang J W et al 2008 Phys. Rev. B 78 064114 | [23] | Bai L G, Liu J, Li X D et al 2009 J. Appl. Phys. 106 073507 | [24] | Jiang S, Bai L G, Liu J et al 2009 Chin. Phys. Lett. 26 076101 | [25] | Jiang S, Liu J, Lin C L et al 2010 J. Appl. Phys. 108 113502 | [26] | Guo Q X, Zhao Y S, Jiang C et al 2008 Solid State Commun. 145 250 | [27] | Yu Z H, Wang Q H, Ma Y Z et al 2017 J. Alloys Compd. 701 542 | [28] | Richard D, Errico L A, Rentería M et al 2016 J. Alloys Compd. 664 580 | [29] | Sharma N D, Singh J, Vijay A et al 2016 J. Phys. Chem. C 120 11679 | [30] | Willingham C B, Wahl J M, Hogan P K et al 2003 Proc. SPIE 5078 179 | [31] | Shikama T, Toh K, Nagata S et al 2006 Nucl. Fusion 46 46 | [32] | Adamopoulos G, Thomas S, Bradley D D et al 2011 Appl. Phys. Lett. 98 123503 | [33] | Nagarajan R, Ahmad S and Prakash G V 2012 Inorg. Chem. 51 12748 | [34] | Bose P P, Gupta M K, Mittal R et al 2011 Phys. Rev. B 84 094301 | [35] | Wang L, Yang W G, Ding Y et al 2010 Phys. Rev. Lett. 105 095701 | [36] | Hoekstra H R and Gingerich K A 1964 Science 146 1163 | [37] | Atou T, Kusaba K, Fukuoka K et al 1990 J. Solid State Chem. 89 378 | [38] | Wang L, Pan Y X, Ding Y et al 2009 Appl. Phys. Lett. 94 061921 | [39] | Zhang J, Cui H, Zhu P F et al 2014 J. Appl. Phys. 115 023502 | [40] | Yusa H, Tsuchiya T, Sata N et al 2010 Inorg. Chem. 49 4478 | [41] | Zhang Q, Wu X and Qin S 2017 Chin. Phys. B 26 090703 | [42] | Wu B, Zinkevich M, Aldinger F et al 2007 J. Solid State Chem. 180 3280 | [43] | Wang Y, Ahuja R and Johansson B 2002 J. Appl. Phys. 92 6616 | [44] | Hammersley A P, Svensson S O, Hanfl, M et al 1996 High Press. Res. 14 235 | [45] | Toby B H 2001 J. Appl. Crystallogr. 34 210 | [46] | Halevy I, Carmon R, Winterrose M L et al 2010 J. Phys.: Conf. Ser. 215 012003 | [47] | Birch F 1978 J. Geophys. Res. 83 1257 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|