Chin. Phys. Lett.  2019, Vol. 36 Issue (1): 017502    DOI: 10.1088/0256-307X/36/1/017502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
From Claringbullite to a New Spin Liquid Candidate Cu$_3$Zn(OH)$_6$FCl
Zili Feng1,2†, Wei Yi3†, Kejia Zhu1, Yuan Wei1,2, Shanshan Miao1, Jie Ma4,5, Jianlin Luo1,2,6, Shiliang Li1,2,6**, Zi Yang Meng1,7,8**, Youguo Shi1,2**
1Beijing National Laboratory of Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190
3Nano Electronics Device Materials group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
4Key Laboratory of Artificial Structures and Quantum Control, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240
5Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093
6Collaborative Innovation Center of Quantum Matter, Beijing 100190
7CAS Center of Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190
8Songshan Lake Materials Laboratory, Dongguan 523808
Cite this article:   
Zili Feng, Wei Yi, Kejia Zhu et al  2019 Chin. Phys. Lett. 36 017502
Download: PDF(784KB)   PDF(mobile)(768KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The search for quantum spin liquid (QSL) materials has attracted significant attention in the field of condensed matter physics in recent years, however so far only a handful of them are considered as candidates hosting QSL ground state. Owning to their geometrically frustrated structures, Kagome materials are ideal systems to realize QSL. We synthesize the kagome structured material claringbullite (Cu$_4$(OH)$_6$FCl) and then replace inter-layer Cu with Zn to form Cu$_3$Zn(OH)$_6$FCl. Comprehensive measurements reveal that doping Zn$^{2+}$ ions transforms magnetically ordered Cu$_4$(OH)$_6$FCl into a non-magnetic QSL candidate Cu$_3$Zn(OH)$_6$FCl. Therefore, the successful syntheses of Cu$_4$(OH)$_6$FCl and Cu$_3$Zn(OH)$_6$FCl provide not only a new platform for the study of QSL but also a novel pathway of investigating the transition between QSL and magnetically ordered systems.
Received: 16 November 2018      Published: 13 December 2018
PACS:  75.10.Kt (Quantum spin liquids, valence bond phases and related phenomena)  
  75.40.Cx (Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.))  
  67.30.er (Magnetic properties, NMR)  
Fund: Supported by the National Key Research and Development Program (2016YFA0300502, 2017YFA0302901, 2016YFA0300604 and 2016YFA0300501), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB28000000, XDB07020100 and QYZDB-SSW-SLH043), the National Natural Science Foundation of China under Grant Nos 11421092, 11574359, 11674370, 11774399, 11474330 and U1732154.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/1/017502       OR      https://cpl.iphy.ac.cn/Y2019/V36/I1/017502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zili Feng
Wei Yi
Kejia Zhu
Yuan Wei
Shanshan Miao
Jie Ma
Jianlin Luo
Shiliang Li
Zi Yang Meng
Youguo Shi
[1]Anderson P W 1987 Science 235 1196
[2]Kitaev A Y 2003 Ann. Phys. 303 2
[3]Kitaev A and Preskill J 2006 Phys. Rev. Lett. 96 110404
[4]Balents L 2010 Nature 464 199
[5]Savary L and Balents L 2017 Rep. Prog. Phys. 80 016502
[6]Zhou Y, Kanoda K and Ng T 2017 Rev. Mod. Phys. 89 025003
[7]Han T H, Helton J S, Chu S, Nocera D, Rodriguez-Rivera J A, Broholm C and Lee Y S 2012 Nature 492 406
[8]Fu M X, Imai T, Han T H and Lee Y 2015 Science 350 655
[9]Norman M R 2016 Rev. Mod. Phys. 88 041002
[10]Feng Z L, Li Z, Meng X, Yi W, Wei Y, Zhang J, Wang Y, Jiang W, Liu Z, Li S and Meng Z Y 2017 Chin. Phys. Lett. 34 077502
[11]Wei Y, Feng Z, Lohstroh W, dela Cruz C, Yi W, Ding Z F, Zhang J, Tan C, Shu L and Wang Y C et al 2017 arXiv:1710.02991
[12]Feng Z, Wei Y, Liu R, Yan D, Wang Y C, Luo J, Senyshyn A, Cruz C d, Yi W, Mei J W, Meng Z Y, Shi Y and Li S 2018 Phys. Rev. B 98 155127
[13]Han T H, Helton J S, Chu S, Prodi A, Singh D K, Mazzoli C, Müller P, Nocera D G and Lee Y S 2011 Phys. Rev. B 83 100402
[14]Zheng J, Ran K, Li T, Wang J, Wang P, Liu B, Liu Z X, Norm, B, Wen J and Yu W 2017 Phys. Rev. Lett. 119 227208
[15]Imai T, Nytko E A, Bartlett B M, Shores M P and Nocera D G 2008 Phys. Rev. Lett. 100 077203
[16]Imai T, Fu M, Han T H and Lee Y S 2011 Phys. Rev. B 84 020411
[17]Han T H, Norman M R, Wen J J, Rodriguez-Rivera J A, Helton J S, Broholm C and Lee Y S 2016 Phys. Rev. B 94 060409
[18]Wen X G 2017 Chin. Phys. Lett. 34 090101
[19]Smaha R W, He W, Sheckelton J P, Wen J and Lee Y S 2018 J. Solid State Chem. 268 123
[20]Ranjith K M, Klein C, Tsirlin A A, Rosner H, Krellner C and Baenitz M 2018 Sci. Rep. 8 10851
[21]Pasco C M, Trump B A, Tran T T, Kelly Z A, Hoffmann C, Heinmaa I, Stern R and McQueen T M 2018 Phys. Rev. Mater. 2 044406
[22]Shores M P, Nytko E A, Bartlett B M and Nocera D G 2005 J. Am. Chem. Soc. 127 13462
[23]Colman R, Sinclair A and Wills A 2011 Chem. Mater. 23 1811
[24]Iqbal Y, Jeschke H O, Reuther J, Valentí R, Mazin I I, Greiter M, Thomale R 2015 Phys. Rev. B 92 220404
[25]Pustogow A, Li Y, Voloshenko I, Puphal P, Krellner C, Mzin I I, Dressel M and Valenti R 2017 Phys. Rev. B 96 241114(R)
[26]Puphal P, Bolte M, Sheptyakov D, Pustogow A, Kliemt K, Dtessel M, Baenitz M and Krellner C 2017 J. Mater. Chem. C 5 2629
[27]Sun W, Huang Y X, Nokhrin S, Pan Y and Mi J X 2016 J. Mater. Chem. C 4 8772
[28]Ma Z, Wang J, Dong Z Y, Zhang J, Li S, Zheng S H, Yu Y, Wang W, Che L, Ran K, Bao S, Cai Z, Čermák P, Schneidewind A, Yano S, Gardner J S, Lu X, Yu S L, Liu J M, Li S, Li J X and Wen J 2018 Phys. Rev. Lett. 120 087201
[29]Mei J W and Wen X G 2015 arXiv:1507.03007
[30]Sun G Y, Wang Y C, Fang C, Qi Y, Cheng M and Meng Z Y 2018 Phys. Rev. Lett. 121 077201
[31]Becker J and Wessel S 2018 Phys. Rev. Lett. 121 077202
[32]Wen X G 1991 Phys. Rev. B 44 2664
[33]Wen X G 2017 Rev. Mod. Phys. 89 041004
[34]Han T, Singleton J and Schlueter J A 2014 Phys. Rev. Lett. 113 227203
[35]Yue X Y, Ouyang Z W, Wang J F, Xia Z C and He Z Z 2018 Phys. Rev. B 97 054417
[36]Rietveld H M 1969 J. Appl. Crystallogr. 2 65
[37]de Vries M A, Kamenev K V, Kockelmann W A, Sanchez-Benitez J and Harrison A 2008 Phys. Rev. Lett. 100 157205
[38]Helton J, Matan K, Shores M, Nytko E, Bartlett B, Yoshida Y, Takano Y, Suslov A, Qiu Y, Chung J H, Nocera D G and Lee Y S 2007 Phys. Rev. Lett. 98 107204
Related articles from Frontiers Journals
[1] Yanxing Yang, Kaiwen Chen, Zhaofeng Ding, Adrian D. Hillier, and Lei Shu. Muon Spin Relaxation Study of Frustrated Tm$_3$Sb$_3$Mg$_2$O$_{14}$ with Kagomé Lattice[J]. Chin. Phys. Lett., 2022, 39(10): 017502
[2] Ling Wang, Yalei Zhang, and Anders W. Sandvik. Quantum Spin Liquid Phase in the Shastry–Sutherland Model Detected by an Improved Level Spectroscopic Method[J]. Chin. Phys. Lett., 2022, 39(7): 017502
[3] Xiaoxue Zhao, Kejing Ran, Jinghui Wang, Song Bao, Yanyan Shangguan, Zhentao Huang, Junbo Liao, Bo Zhang, Shufan Cheng, Hao Xu, Wei Wang, Zhao-Yang Dong, Siqin Meng, Zhilun Lu, Shin-ichiro Yano, Shun-Li Yu, Jian-Xin Li, and Jinsheng Wen. Neutron Spectroscopy Evidence for a Possible Magnetic-Field-Induced Gapless Quantum-Spin-Liquid Phase in a Kitaev Material $\alpha$-RuCl$_3$[J]. Chin. Phys. Lett., 2022, 39(5): 017502
[4] Kejing Ran, Jinghui Wang, Song Bao, Zhengwei Cai, Yanyan Shangguan, Zhen Ma, Wei Wang, Zhao-Yang Dong, P. Čermák, A. Schneidewind, Siqin Meng, Zhilun Lu, Shun-Li Yu, Jian-Xin Li, and Jinsheng Wen. Evidence for Magnetic Fractional Excitations in a Kitaev Quantum-Spin-Liquid Candidate $\alpha$-RuCl$_3$[J]. Chin. Phys. Lett., 2022, 39(2): 017502
[5] Yuan Wei, Xiaoyan Ma, Zili Feng, Yongchao Zhang, Lu Zhang, Huaixin Yang, Yang Qi, Zi Yang Meng, Yan-Cheng Wang, Youguo Shi, and Shiliang Li. Nonlocal Effects of Low-Energy Excitations in Quantum-Spin-Liquid Candidate Cu$_3$Zn(OH)$_6$FBr[J]. Chin. Phys. Lett., 2021, 38(9): 017502
[6] Jianting Ji, Mengjie Sun, Yanzhen Cai, Yimeng Wang, Yingqi Sun, Wei Ren, Zheng Zhang, Feng Jin, and Qingming Zhang. Rare-Earth Chalcohalides: A Family of van der Waals Layered Kitaev Spin Liquid Candidates[J]. Chin. Phys. Lett., 2021, 38(4): 017502
[7] J.-J. Wen, Y. S. Lee. The Search for the Quantum Spin Liquid in Kagome Antiferromagnets[J]. Chin. Phys. Lett., 2019, 36(5): 017502
[8] Weiwei Liu, Zheng Zhang, Jianting Ji, Yixuan Liu, Jianshu Li, Xiaoqun Wang, Hechang Lei, Gang Chen, Qingming Zhang. Rare-Earth Chalcogenides: A Large Family of Triangular Lattice Spin Liquid Candidates[J]. Chin. Phys. Lett., 2018, 35(11): 017502
[9] Zili Feng, Zheng Li, Xin Meng, Wei Yi, Yuan Wei, Jun Zhang, Yan-Cheng Wang, Wei Jiang, Zheng Liu, Shiyan Li, Feng Liu, Jianlin Luo, Shiliang Li, Guo-qing Zheng, Zi Yang Meng, Jia-Wei Mei, Youguo Shi. Gapped Spin-1/2 Spinon Excitations in a New Kagome Quantum Spin Liquid Compound Cu$_3$Zn(OH)$_6$FBr [J]. Chin. Phys. Lett., 2017, 34(7): 017502
Viewed
Full text


Abstract