Chin. Phys. Lett.  2017, Vol. 34 Issue (6): 060201    DOI: 10.1088/0256-307X/34/6/060201
GENERAL |
From Nothing to Something II: Nonlinear Systems via Consistent Correlated Bang
Sen-Yue Lou1,2
1Ningbo Collabrative Innovation Center of Nonlinear Harzard System of Ocean and Atmosphere and Faculty of Science, Ningbo University, Ningbo 315211
2Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062
Cite this article:   
Sen-Yue Lou 2017 Chin. Phys. Lett. 34 060201
Download: PDF(390KB)   PDF(mobile)(395KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Chinese ancient sage Laozi said that everything comes from 'nothing'. In the work [Chin. Phys. Lett. 30 (2013) 080202], infinitely many discrete integrable systems have been obtained from nothing via simple principles (Dao). In this study, a new idea, the consistent correlated bang, is introduced to obtain nonlinear dynamic systems including some integrable ones such as the continuous nonlinear Schrödinger equation, the (potential) Korteweg de Vries equation, the (potential) Kadomtsev–Petviashvili equation and the sine-Gordon equation. These nonlinear systems are derived from nothing via suitable 'Dao', the shifted parity, the charge conjugate, the delayed time reversal, the shifted exchange, the shifted-parity-rotation and so on.
Received: 07 February 2017      Published: 23 May 2017
PACS:  02.30.Ik (Integrable systems)  
  02.30.Jr (Partial differential equations)  
  05.45.Yv (Solitons)  
  11.10.Lm (Nonlinear or nonlocal theories and models)  
Fund: Supported by the Global Change Research Program of China under Grant No 2015CB953904, the National Natural Science Foundation of China under Grant No 11435005, the Shanghai Knowledge Service Platform for Trustworthy Internet of Things under Grant No ZF1213, and the K. C. Wong Magna Fund in Ningbo University.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/6/060201       OR      https://cpl.iphy.ac.cn/Y2017/V34/I6/060201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Sen-Yue Lou
[1]Boltz W G 1993 Lao tzu Tao te ching. In Early Chinese Texts: A Bibliographical Guide (Berkeley: University California) p 269
[2]Lou S Y, Li Y Q and Tang X Y 2013 Chin. Phys. Lett. 30 080202
[3]Crighton D G 1995 Acta Appl. Math. 39 39
[4]Lou S Y 2016 arXiv:1603.03975v2
[5]Lou S Y and Huang F 2016 Sci. Rep. 7 869
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 060201
[2] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 060201
[3] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 060201
[4] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 060201
[5] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 060201
[6] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 060201
[7] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 060201
[8] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 060201
[9] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 060201
[10] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 060201
[11] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 060201
[12] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 060201
[13] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 060201
[14] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 060201
[15] Yong-Shuai Zhang, Jing-Song He. Bound-State Soliton Solutions of the Nonlinear Schr?dinger Equation and Their Asymmetric Decompositions[J]. Chin. Phys. Lett., 2019, 36(3): 060201
Viewed
Full text


Abstract