Chin. Phys. Lett.  2016, Vol. 33 Issue (12): 124204    DOI: 10.1088/0256-307X/33/12/124204
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Large Signal Modulation Characteristics in the Transition Regime for Two-State Lasing Quantum Dot Lasers
Zun-Ren Lv1,2, Hai-Ming Ji1,2**, Xiao-Guang Yang1,2, Shuai Luo1,2, Feng Gao1,2, Feng Xu1,2, Tao Yang1,2**
1Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Zun-Ren Lv, Hai-Ming Ji, Xiao-Guang Yang et al  2016 Chin. Phys. Lett. 33 124204
Download: PDF(1921KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Large-signal modulation capability, as an important performance indicator, is directly related to the high-speed optical communication technology involved. We experimentally and theoretically investigate the large-signal modulation characteristics of the simultaneous ground-state (GS) and the excited-state (ES) lasing in InAs/GaAs quantum dot laser diodes. The large-signal modulation capability of total light intensity in the transition regime from GS lasing to two-state lasing is unchanged as the bias-current increases. However, GS and ES large-signal eye diagrams show obvious variations during the transition. Relaxation oscillations and large-signal eye diagrams for GS, ES, and total light intensities are numerically simulated and analyzed in detail by using a rate-equation model. The findings show that a complementary relationship between the light intensities for GS and ES lasing exists in both the transition regime and the two-state lasing regime, leading to a much smaller overshooting power and a shorter settling time for the total light intensity. Therefore, the eye diagrams of GS or ES lasing are diffuse whereas those of total light intensity are constant as the bias-current increases in the transition regime.
Received: 25 August 2016      Published: 29 December 2016
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  42.60.Fc (Modulation, tuning, and mode locking)  
  78.67.Hc (Quantum dots)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
Fund: Supported by the National Key Research and Development Program of China under Grant No 2016YFB0402302, and the National Natural Science Foundation of China under Grant No 91433206.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/12/124204       OR      https://cpl.iphy.ac.cn/Y2016/V33/I12/124204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zun-Ren Lv
Hai-Ming Ji
Xiao-Guang Yang
Shuai Luo
Feng Gao
Feng Xu
Tao Yang
[1]Zhukov A E, Maksimov M V and Kovsh A R 2012 Semiconductors 46 1225
[2]Qasaimeh O and Khanfar H 2004 IEE Proc. Optoelectron. 151 143
[3]Stevens B J et al 2009 Appl. Phys. Lett. 95 061101
[4]Lee C S et al 2011 Appl. Phys. Lett. 98 011103
[5]Majid M A et al 2011 Appl. Phys. Lett. 99 051101
[6]Arsenijevic D et al 2014 Appl. Phys. Lett. 104 181101
[7]Wang C et al 2014 IEEE J. Quantum Electron. 50 723
[8]Markus A et al 2003 Appl. Phys. Lett. 82 1818
[9]Liu C Y et al 2013 Appl. Phys. Express 6 102702
[10]Xu P F et al 2012 Opt. Lett. 37 1298
[11]Xu P F et al 2010 J. Appl. Phys. 107 013102
[12]Abusaa M et al 2013 Phys. Rev. A 87 063827
[13]R?hm A, Lingnau Be and Lüdge K 2015 Appl. Phys. Lett. 106 191102
[14]Koryukin I V 2015 Phys. Rev. A 92 043840
[15]Lv Z R et al 2015 AIP Adv. 5 107115
[16]Cataluna M A et al 2006 Appl. Phys. Lett. 89 081124
[17]Cataluna M A et al 2010 Opt. Express 18 12832
[18]Wu Y C, Suris R A and Asryan L V 2013 Appl. Phys. Lett. 102 191102
Related articles from Frontiers Journals
[1] Yu Ma, Wei-Jiang Li Yun-Fei, Xu, Jun-Qi Liu, Ning Zhuo, Ke Yang, Jin-Chuan Zhang, Shen-Qiang Zhai, Shu-Man Liu, Li-Jun Wang, and Feng-Qi Liu. Flat Top Optical Frequency Combs Based on a Single-Core Quantum Cascade Laser at Wavelength of $\sim$ 8.7 μm[J]. Chin. Phys. Lett., 2023, 40(1): 124204
[2] Dai-Bing Zhou, Song Liang, Yi-Ming He, Yun-Long Liu, Wu Zhao, Dan Lu, Ling-Juan Zhao, Wei Wang. A 10 Gb/s 1.5 μm Widely Tunable Directly Modulated InGaAsP/InP DBR Laser *[J]. Chin. Phys. Lett., 0, (): 124204
[3] Dai-Bing Zhou, Song Liang, Yi-Ming He, Yun-Long Liu, Wu Zhao, Dan Lu, Ling-Juan Zhao, Wei Wang. A 10 Gb/s 1.5 μm Widely Tunable Directly Modulated InGaAsP/InP DBR Laser[J]. Chin. Phys. Lett., 2020, 37(6): 124204
[4] Yi-Chen Xu, Zhi-Min Wang, Feng-Feng Zhang, Rui-Nan Yang, Xu-Chao Liu, Yue Song, Yong Bo, Qin-Jun Peng, Zu-Yan Xu. High-Efficiency Spectral-Beam-Combined 930nm Diode Laser Source[J]. Chin. Phys. Lett., 2020, 37(5): 124204
[5] Rui Guo, Ye-Wen Jiang, Ting-Hao Liu, Qiang Liu, Ma-Li Gong. Pulse Characteristics of Cavityless Solid-State Laser[J]. Chin. Phys. Lett., 2020, 37(4): 124204
[6] Ting Fu, Yu-Fei Wang, Xue-You Wang, Xu-Yan Zhou, Wan-Hua Zheng. Mode Control of Quasi-PT Symmetry in Laterally Multi-Mode Double Ridge Semiconductor Laser[J]. Chin. Phys. Lett., 2020, 37(4): 124204
[7] Yan-Ping Li, Li-Jun Yuan, Li Tao, Wei-Xi Chen, Bao-Jun Wang, Jiao-Qing Pan. III–V/Si Hybrid Laser Array with DBR on Si Waveguide[J]. Chin. Phys. Lett., 2019, 36(10): 124204
[8] Zhong-Hao Chen, Hong-Wei Qu, Xiao-Long Ma, Ai-Yi Qi, Xu-Yan Zhou, Yu-Fei Wang, Wan-Hua Zheng. High-Brightness Low-Divergence Tapered Lasers with a Narrow Taper Angle[J]. Chin. Phys. Lett., 2019, 36(8): 124204
[9] Ya-Jie Li, Jia-Qi Wang, Lu Guo, Guang-Can Chen, Zhao-Song Li, Hong-Yan Yu, Xu-Liang Zhou, Huo-Lei Wang, Wei-Xi Chen, Jiao-Qing Pan. Electrically and Optically Bistable Operation in an Integration of a 1310nm DFB Laser and a Tunneling Diode[J]. Chin. Phys. Lett., 2018, 35(4): 124204
[10] Meng Xun, Yun Sun, Chen Xu, Yi-Yang Xie, Zhi Jin, Jing-Tao Zhou, Xin-Yu Liu, De-Xin Wu. Beam Steering Analysis in Optically Phased Vertical Cavity Surface Emitting Laser Array[J]. Chin. Phys. Lett., 2018, 35(3): 124204
[11] Qiang Gao, Wu-Bin Weng, Bo Li, Zhong-Shan Li. Quantitative and Spatially Resolved Measurement of Atomic Potassium in Combustion Using Diode Laser[J]. Chin. Phys. Lett., 2018, 35(2): 124204
[12] Xiao-Wang Fan, Jian-Ping Liu, Feng Zhang, Masao Ikeda, De-Yao Li, Shu-Ming Zhang, Li-Qun Zhang, Ai-Qin Tian, Peng-Yan Wen, Guo-Hong Ma, Hui Yang. Effect of Droop Phenomenon in InGaN/GaN Blue Laser Diodes on Threshold Current[J]. Chin. Phys. Lett., 2017, 34(9): 124204
[13] Shu-Shan Huang, Yu Zhang, Yong-Ping Liao, Cheng-Ao Yang, Xiao-Li Chai, Ying-Qiang Xu, Hai-Qiao Ni, Zhi-Chuan Niu. High-Power Single-Spatial-Mode GaSb Tapered Laser around 2.0μm with Very Small Lateral Beam Divergence[J]. Chin. Phys. Lett., 2017, 34(8): 124204
[14] Si-Hang Wei, Xiang-Jun Shang, Ben Ma, Ze-Sheng Chen, Yong-Ping Liao, Hai-Qiao Ni, Zhi-Chuan Niu. Intracavity Spontaneous Parametric Down-Conversion in Bragg Reflection Waveguide Edge Emitting Diode[J]. Chin. Phys. Lett., 2017, 34(7): 124204
[15] Yang Chen, Yu-Fei Wang, Hong-Wei Qu, Yu-Fang Zhang, Yun Liu, Xiao-Long Ma, Xiao-Jie Guo, Peng-Chao Zhao, Wan-Hua Zheng. High Coupling Efficiency of the Fiber-Coupled Module Based on Photonic-Band-Crystal Laser Diodes[J]. Chin. Phys. Lett., 2017, 34(7): 124204
Viewed
Full text


Abstract