Chin. Phys. Lett.  2016, Vol. 33 Issue (08): 086801    DOI: 10.1088/0256-307X/33/8/086801
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Comparative Study of Monolayer and Bilayer Epitaxial Graphene Field-Effect Transistors on SiC Substrates
Ze-Zhao He1,2, Ke-Wu Yang1,2, Cui Yu2, Qing-Bin Liu2, Jing-Jing Wang2, Xu-Bo Song2, Ting-Ting Han2, Zhi-Hong Feng2**, Shu-Jun Cai2
1School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300130
2National Key Laboratory of ASIC, Hebei Semiconductor Research Institute, Shijiazhuang 050051
Cite this article:   
Ze-Zhao He, Ke-Wu Yang, Cui Yu et al  2016 Chin. Phys. Lett. 33 086801
Download: PDF(1195KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Monolayer and bilayer graphenes have generated tremendous excitement as the potentially useful electronic materials due to their unique features. We report on monolayer and bilayer epitaxial graphene field-effect transistors (GFETs) fabricated on SiC substrates. Compared with monolayer GFETs, the bilayer GFETs exhibit a significant improvement in dc characteristics, including increasing current density $I_{\rm DS}$, improved transconductance $g_{\rm m}$, reduced sheet resistance $R_{\rm on}$, and current saturation. The improved electrical properties and tunable bandgap in the bilayer graphene lead to the excellent dc performance of the bilayer GFETs. Furthermore, the improved dc characteristics enhance a better rf performance for bilayer graphene devices, demonstrating that the quasi-free-standing bilayer graphene on SiC substrates has a great application potential for the future graphene-based electronics.
Received: 16 May 2016      Published: 31 August 2016
PACS:  68.65.Pq (Graphene films)  
  85.30.Tv (Field effect devices)  
  72.80.Vp (Electronic transport in graphene)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/8/086801       OR      https://cpl.iphy.ac.cn/Y2016/V33/I08/086801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ze-Zhao He
Ke-Wu Yang
Cui Yu
Qing-Bin Liu
Jing-Jing Wang
Xu-Bo Song
Ting-Ting Han
Zhi-Hong Feng
Shu-Jun Cai
[1]Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[2]Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[3]Schwierz F, Pezoldt J and Granzner R 2015 Nanoscale 7 8261
[4]Cheng R, Bai J, Liao L, Zhou H, Chen Y, Liu L, Lin Y, Jiang S, Huang Y and Duan X 2012 Proc. Natl. Acad. Sci. USA 109 11588
[5]Fiori G, Neumaier D, Szafranek B N and Iannaccone G 2014 IEEE Trans. Electron Devices 61 729
[6]Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R and Wang F 2009 Nature 459 820
[7]Xia F, Farmer D B, Lin Y and Avouris P 2010 Nano Lett. 10 715
[8]Riedl C, Coletti C, Iwasaki T, Zakharov A A and Starke U 2009 Phys. Rev. Lett. 103 246804
[9]Sforzini J, Nemec L, Denig T, Stadtmüller B, L T, Kumpf C, Soubatch S, Starke U, Rinke P, Blum V, Bocquet F C and Tautz F S 2015 Phys. Rev. Lett. 114 106804
[10]Yu C, Liu Q B, Li J, Lu W L, He Z Z, Cai S J and Feng Z H 2014 Appl. Phys. Lett. 105 183105
[11]Nyakiti L O, Myers-Ward R L, Wheeler V D and Gaskill D K 2012 Nano Lett. 12 1749
[12]Feng Z H, Yu C, Li J, Liu Q B, He Z Z, Song X B, Wang J J and Cai S J 2014 Carbon 75 249
[13]He Z Z, Yang K W, Yu C, Liu Q B, Wang J J, Li J, Lu W L, Feng Z H and Cai S J 2016 Chin. Phys. B 25 067206
[14]He Z Z, Yang K W, Yu C, Li J, Liu Q B, Lu W L, Feng Z H and Cai S J 2015 Chin. Phys. Lett. 32 117204
[15]Castro E V, Novoselov K S, Morozov S V, Peres N M R, Lopes dos Santos J M B, Nilsson J, Guinea F, Geim A K and Castro N A H 2007 Phys. Rev. Lett. 99 216802
[16]Min H, Sahu B, Banerjee S K and MacDonald A H 2007 Phys. Rev. B 75 155115
[17]Kim D H and Alamo J A D 2010 IEEE Electron Device Lett. 31 806
[18]Liao L, Bai J, Cheng R, Zhou H, Liu L, Liu Y, Huang Y and Duan X 2012 Nano Lett. 12 2653
[19]Guo Z, Dong R, Chakraborty P S, Lourenco N, Palmer J, Hu Y, Ruan M, Hankinson J, Kunc J, Cressler J D, Berger C and Deheer W 2013 Nano Lett. 13 942
[20]Yu C, He Z Z, Li J, Song X B, Liu Q B, Cai S J and Feng Z H 2016 Appl. Phys. Lett. 108 013102
[21]Schwierz F 2013 Proc. IEEE 101 1567
Related articles from Frontiers Journals
[1] Jie Jiang, Long Yan, and Haiping Fang. Effect of Oxide Content of Graphene Oxide Membrane on Remarkable Adsorption for Calcium Ions[J]. Chin. Phys. Lett., 2021, 38(10): 086801
[2] Zhibin Zhang, Jiajie Qi, Mengze Zhao, Nianze Shang, Yang Cheng, Ruixi Qiao, Zhihong Zhang, Mingchao Ding, Xingguang Li, Kehai Liu, Xiaozhi Xu, Kaihui Liu, Can Liu, and Muhong Wu. Scrolled Production of Large-Scale Continuous Graphene on Copper Foils[J]. Chin. Phys. Lett., 2020, 37(10): 086801
[3] Xueyan Li, Han Lin, Yuejin Zhao, and Baohua Jia. Diffraction-Limited Imaging with a Graphene Metalens[J]. Chin. Phys. Lett., 2020, 37(10): 086801
[4] Hang Yang, Wei Chen, Ming-Yang Li, Feng Xiong, Guang Wang, Sen Zhang, Chu-Yun Deng, Gang Peng, and Shi-Qiao Qin. Ultrathin Al Oxide Seed Layer for Atomic Layer Deposition of High-$\kappa$ Al$_{2}$O$_{3}$ Dielectrics on Graphene[J]. Chin. Phys. Lett., 2020, 37(7): 086801
[5] Gang Li, Hong-Wei Cheng, Li-Fang Guo, Kai-Ying Wang, Zai-Jun Cheng. An Efficiency Enhanced Graphene/n-Si Schottky Junction for Solar Cells[J]. Chin. Phys. Lett., 2018, 35(7): 086801
[6] S. Fahad, M. Ali, S. Ahmed, S. Khan, S. Alam, S. Akhtar. Effect of Metal Contact and Rapid Thermal Annealing on Electrical Characteristics of Graphene Matrix[J]. Chin. Phys. Lett., 2017, 34(10): 086801
[7] XIANG Lang, WU Jian, MA Shuang-Ying, WANG Fang, ZHANG Kai-Wang. Nanoindentation Models of Monolayer Graphene and Graphyne under Point Load Pattern Studied by Molecular Dynamics[J]. Chin. Phys. Lett., 2015, 32(09): 086801
[8] FAN Tian-Ju, YUAN Chun-Qiu, TANG Wei, TONG Song-Zhao, LIU Yi-Dong, HUANG Wei, MIN Yong-Gang, Arthur J. Epstein. A Novel Method of Fabricating Flexible Transparent Conductive Large Area Graphene Film[J]. Chin. Phys. Lett., 2015, 32(07): 086801
[9] LUO Wen-Gang, WANG Hua-Feng, CAI Kai-Ming, HAN Wen-Peng, TAN Ping-Heng, HU Ping-An, WANG Kai-You. Synthesis of Homogenous Bilayer Graphene on Industrial Cu Foil[J]. Chin. Phys. Lett., 2014, 31(06): 086801
[10] XIE Nan, GONG Hui-Qi, ZHOU Zhi, GUO Xiao-Dong, YAN Shi-Chao, SUN Qian, XING Sirui, WU Wei, PEI Shin-shem, BAO Jiming, SHAN Xin-Yan, GUO Yang, LU Xing-Hua . Visualization of a Maze-Like Reconstruction of Graphene on a Copper Surface at the Atomic Scale[J]. Chin. Phys. Lett., 2013, 30(5): 086801
[11] WANG Wen-Rong, LIANG Chen, LI Tie, YANG Heng, LU Na, WANG Yue-Lin. Graphene Domains Synthesized on Electroplated Copper by Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2013, 30(2): 086801
[12] HUANG Qing-Song, GUO Li-Wei, WANG Wen-Jun, WANG Gang, WANG Wan-Yan, JIA Yu-Ping, LIN Jing -Jing, LI Kang, CHEN Xiao-Long. Raman Spectrum of Epitaxial Graphene on SiC (0001) by Pulsed Electron Irradiation[J]. Chin. Phys. Lett., 2010, 27(4): 086801
Viewed
Full text


Abstract