Chin. Phys. Lett.  2016, Vol. 33 Issue (08): 080302    DOI: 10.1088/0256-307X/33/8/080302
GENERAL |
Time-Modulated Hamiltonian for Interpreting Delayed-Choice Experiments via Mach–Zehnder Interferometers
Zhi-Yuan Li1,2**
1Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2College of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641
Cite this article:   
Zhi-Yuan Li 2016 Chin. Phys. Lett. 33 080302
Download: PDF(427KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Many delayed-choice experiments based on Mach–Zehnder interferometers (MZI) have been considered and made to address the fundamental problem of wave-particle duality. Conventional wisdom long holds that by inserting or removing the second beam splitter (BS2) in a controllable way, microscopic particles (photons, electrons, etc.) transporting within the MZI can lie in the quantum superposition of the wave and particle state as $\psi =a_{\rm w} \psi _{\rm wave} +a_{\rm p} \psi _{\rm particle}$. Here we present an alternative interpretation to these delayed-choice experiments. We notice that as the BS2 is purely classical, the inserting and removing operation of the BS2 imposes a time-modulated Hamiltonian $H_{\bmod} (t)=a(t)H_{\rm in} +b(t)H_{\rm out}$, instead of a quantum superposition of $H_{\rm in}$ and $H_{\rm out}$ as $H=a_{\rm w} H_{\rm in} +a_{\rm p} H_{\rm out}$, to act upon the incident wave function. Solution of this quantum scattering problem, rather than the long held quantum eigen-problem yields a synchronically time-modulated output wave function as $\psi _{\bmod} (t)=a(t)\psi _{\rm wave} +b(t)\psi _{\rm particle}$, instead of the stationary quantum superposition state $\psi =a_{\rm w} \psi _{\rm wave} +a_{\rm p} \psi _{\rm particle}$. As a result, the probability of particle output from the MZI behaves as if they are in the superposition of the wave and particle state when many events over time accumulation are counted and averaged. We expect that these elementary but insightful analyses will shed a new light on exploring basic physics beyond the long-held wisdom of wave-particle duality and the principle of complementarity.
Received: 06 March 2016      Published: 31 August 2016
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.75.Dg (Atom and neutron interferometry)  
  42.50.Xa (Optical tests of quantum theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/8/080302       OR      https://cpl.iphy.ac.cn/Y2016/V33/I08/080302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhi-Yuan Li
[1]Bohr N 1928 Naturwissenschaften 16 245
[2]Bohr N 1928 Nature 121 580
[3]Bohr N 1949 Albert Einstein: Philosopher Scientist (Evanston: Library of Living Philosophers) p 200
Bohr N 1983 Quantum Theory and Measurement (Princeton: Princeton University Press) p 9
[4]Heisenberg W 1930 The Physical Principles of the Quantum Theory (Chicago: University of Chicago Press)
[5]Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[6]Schr?dinger E 1935 Proc. Camb. Philos. Soc. 31 555
[7]Bohm D A 1952 Phys. Rev. 85 166
Bohm D A 1952 Phys. Rev. 85 180
[8]Feynman R, Leighton R and Sands M, The Feynman Lectures on Physics (Cambridge: Addison-Wesley) vol III chap I
[9]Jammer M 1974 The Philosophy of Quantum Mechanics: The Interpretations of Quantum Mechanics in Historical Perspective (New York: Wiley)
[10]Bell J S 1988 Speakable and Unspeakable in Quantum Mechanics (Cambridge: Cambridge University Press)
[11]Wootters W K and Zurek W H 1979 Phys. Rev. D 19 473
[12]Cronin A D et al 2009 Rev. Mod. Phys. 81 1051
[13]Wheeler J A 1978 Mathematical Foundations of Quantum Theory (New York: Academic Press) p 948
Wheeler J A 1979 Problems in the Formulations of Physics (Amsterdam: North-Holland)
[14]Scully M O and Druhl K 1982 Phys. Rev. A 25 2208
[15]Hellmuth T et al 1987 Phys. Rev. A 35 2532
[16]Lawson-Daku B J, Asimov R, Gorceix O, Miniatura Ch, Robert J and Baudon J 1996 Phys. Rev. A 54 5042
[17]Jacques V, Wu E, Grosshans F, Treussart F, Grangier P, Aspect A and Roch J F 2007 Science 315 966
[18]Jacques V, Wu E, Grosshans F, Treussart F, Grangier P, Aspect A and Roch J F 2008 Phys. Rev. Lett. 100 220402
[19]Ionicioiu R and Terno D R 2011 Phys. Rev. Lett. 107 230406
[20]Tang J S, Li Y L, Xu X Y, Xiang G Y, Li C F and Guo G C 2012 Nat. Photon. 6 600
[21]Kaiser F, Coudreau T, Milman P, Ostrowsky D B and Tanzilli S 2012 Science 338 637
[22]Peruzzo A, Shadbolt P, Brunner N et al 2012 Science 338 634
[23]Tang J S, Li Y L, Li C F and Guo G C 2013 Phys. Rev. A 88 014103
[24]Yan H, Liao K, Deng Z, He J, Xue Z Y, Zhang Z M and Zhu S L 2015 Phys. Rev. A 91 042132
[25]Xin T, Li H, Wang B X and Long G L 2015 Phys. Rev. A 92 022126
[26]Englert B G 1996 Phys. Rev. Lett. 77 2154
[27]Li Z Y 2014 Chin. Phys. B 23 110309
[28]Jia A A, Yang J, Yan S H, Hu Q Q, Luo Y K and Zhu S Y 2015 Chin. Phys. B 24 080302
[29]Sun J, Sun Y N, Li C F and Guo G C 2015 Chin. Phys. Lett. 32 090302
[30]Zhu X W, Fang X M, Peng X H, Feng X H, Gao K L and Du F 2001 J. Phys. B 34 4349
Related articles from Frontiers Journals
[1] Qiuxin Zhang, Chenhao Zhu, Yuxin Wang, Liangyu Ding, Tingting Shi, Xiang Zhang, Shuaining Zhang, and Wei Zhang. Experimental Test of Contextuality Based on State Discrimination with a Single Qubit[J]. Chin. Phys. Lett., 2022, 39(8): 080302
[2] Jie Xie, Li Zhou, Aonan Zhang, Huichao Xu, Man-Hong Yung, Ping Xu, Nengkun Yu, and Lijian Zhang. Entirety of Quantum Uncertainty and Its Experimental Verification[J]. Chin. Phys. Lett., 2021, 38(7): 080302
[3] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 080302
[4] Wei-Min Shang, Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Quantum Deletion of Copies of Two Non-orthogonal Quantum States via Weak Measurement[J]. Chin. Phys. Lett., 2020, 37(5): 080302
[5] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 080302
[6] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 080302
[7] Junzhao Liu, Yanjun Liu, Jing Lu. Complementarity via Minimum Error Measurement in a Two-Path Interferometer[J]. Chin. Phys. Lett., 2019, 36(5): 080302
[8] Yang Yang, An-Min Wang, Lian-Zhen Cao, Jia-Qiang Zhao, Huai-Xin Lu. Frozen Quantum Coherence for a Central Two-Qubit System in a Spin-Chain Environment[J]. Chin. Phys. Lett., 2018, 35(8): 080302
[9] W.-B. Wang, X.-Y. Chang, F. Wang, P.-Y. Hou, Y.-Y. Huang, W.-G. Zhang, X.-L. Ouyang, X.-Z. Huang, Z.-Y. Zhang, H.-Y. Wang, L. He, L.-M. Duan. Realization of Quantum Maxwell's Demon with Solid-State Spins[J]. Chin. Phys. Lett., 2018, 35(4): 080302
[10] Muhammad Adeel Ajaib. Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation[J]. Chin. Phys. Lett., 2017, 34(5): 080302
[11] A. Ben-Israel, L. Knips, J. Dziewior, J. Meinecke, A. Danan, H. Weinfurter, L. Vaidman. An Improved Experiment to Determine the 'Past of a Particle' in the Nested Mach–Zehnder Interferometer[J]. Chin. Phys. Lett., 2017, 34(2): 080302
[12] Bing-Sheng Lin, Tai-Hua Heng. A Relation of the Noncommutative Parameters in Generalized Noncommutative Phase Space[J]. Chin. Phys. Lett., 2016, 33(11): 080302
[13] Faizi E., Eftekhari H.. Quantum Correlations in Ising-XYZ Diamond Chain Structure under an External Magnetic Field[J]. Chin. Phys. Lett., 2015, 32(10): 080302
[14] SUN Jun, SUN Yong-Nan, LI Chuan-Feng, GUO Guang-Can. On Delay of the Delayed Choice Experiment[J]. Chin. Phys. Lett., 2015, 32(09): 080302
[15] XU Feng, WANG Li-Fei, CUI Xiao-Dong. Quantum Interference by Entangled Trajectories[J]. Chin. Phys. Lett., 2015, 32(08): 080302
Viewed
Full text


Abstract