GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
|
|
|
|
Cosmic Constraints to the $w$CDM Model from Strong Gravitational Lensing |
Jie An1, Bao-Rong Chang1, Li-Xin Xu1,2** |
1Institute of Theoretical Physics, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 2State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190
|
|
Cite this article: |
Jie An, Bao-Rong Chang, Li-Xin Xu 2016 Chin. Phys. Lett. 33 079801 |
|
|
Abstract We study the cosmic constraint to the $w$CDM (cold dark matter with a constant equation of state $w$) model via 118 strong gravitational lensing systems which are compiled from SLACS, BELLS, LSD and SL2S surveys, where the ratio between two angular diameter distances $D^{\rm obs}=D_{\rm A}(z_{\rm l},z_{\rm s})/D_{\rm A}(0,z_{\rm s})$ is taken as a cosmic observable. To obtain this ratio, we adopt two strong lensing models: one is the singular isothermal sphere model (SIS) and the other one is the power-law density profile (PLP) model. Via the Markov chain Monte Carlo method, the posterior distribution of the cosmological model parameters space is obtained. The results show that the cosmological model parameters are not sensitive to the parameterized forms of the power-law index $\gamma$. Furthermore, the PLP model gives a relatively tighter constraint to the cosmological parameters than that of the SIS model. The predicted value of ${\it \Omega}_{\rm m}=0.31^{+0.44}_{-0.24}$ by the SIS model is compatible with that obtained by Planck2015: ${\it \Omega}_{\rm m}=0.313\pm0.013$. However, the value of ${\it \Omega}_{\rm m}=0.15^{+0.13}_{-0.11}$ based on the PLP model is smaller and has $1.25\sigma$ tension with that obtained by Planck2015.
|
|
Received: 07 April 2016
Published: 01 August 2016
|
|
PACS: |
98.80.-k
|
(Cosmology)
|
|
98.80.Es
|
(Observational cosmology (including Hubble constant, distance scale, cosmological constant, early Universe, etc))
|
|
|
|
|
[1] | Walsh D, Carswell R F and Weymann R J 1979 Nature 279 381 | [2] | Yang L, Xu L X and Yang W Q 2015 Chin. Phys. Lett. 32 059801 | [3] | Biesiada M 2006 Phys. Rev. D 73 023006 | [4] | Cao S, Biesiada M, Gavazzi R, Piorkowska A and Zhu Z H 2015 Astrophys. J. 806 185 | [5] | Biesiada M, Piorkowska A and Malec B 2010 Mon. Not. R. Astron. Soc. 406 1055 | [6] | Cao S and Zhu Z H 2012 J. Cosmol. Astropart. Phys. 03 016 | [7] | Wang N and Xu L 2013 Mod. Phys. Lett. A 28 1350057 | [8] | Zhu Z H 2000 Mod. Phys. Lett. A 15 1023 | [9] | Zhu Z H 2000 Int. J. Mod. Phys. D 9 591 | [10] | Chae K H 2003 Mon. Not. R. Astron. Soc. 346 746 | [11] | Mitchell J L et al 2005 Astrophys. J. 622 81 | [12] | Treu T, Koopmans L V, Bolton A S et al 2006 Astrophys. J. 640 662 | [13] | Koopmans L V E, Bolton A, Ture T et al 2009 Astrophys. J. 703 L51 | [14] | Kochanek C S 1996 Astrophys. J. 466 638 | [15] | Ofek E O, Rix H W and Maoz D 2003 Mon. Not. R. Astron. Soc. 343 639 | [16] | Chae K H and Mao S 2003 Astrophys. J. 599 L61 | [17] | Chae K H et al 2004 Astrophys. J. 607 L71 | [18] | Li X, Cao S, Zheng X, Biesiada M and Zhu Z H 2015 arXiv:1510.03494 | [19] | Liao K, Li Z, Cao C, Biesiada M, Zheng X and Zhu Z H 2015 arXiv:1511.01318 | [20] | Chen Y, Geng C, Cao S, Huang Y and Zhu Z 2015 J. Cosmol. Astropart. Phys. 2015 02010 | [21] | Eisenstein D J et al 2011 Astron. J. 142 72 | [22] | Brownstein et al 2012 Astrophys. J. 744 41 | [23] | Ruff A et al 2011 Astrophys. J. 727 96 | [24] | Sonnenfeld A et al 2013 Astrophys. J. 777 98 | [25] | Grillo C, Lombardi M et al 2008 Astron. Astrophys. 477 397 | [26] | J?rgensen I, Franx M and Kj?rgard P 1995 Mon. Not. R. Astron. Soc. 273 1097 | [27] | J?rgensen I, Franx M and Kj?rgard P 1995 Mon. Not. R. Astron. Soc. 276 1341 | [28] | Lewis A and Bridle S 2002 Phys. Rev. D 66 103511 | [29] | Ade P A R et al 2015 arXiv:1502.01589v2 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|