Chin. Phys. Lett.  2016, Vol. 33 Issue (07): 079801    DOI: 10.1088/0256-307X/33/7/079801
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
Cosmic Constraints to the $w$CDM Model from Strong Gravitational Lensing
Jie An1, Bao-Rong Chang1, Li-Xin Xu1,2**
1Institute of Theoretical Physics, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024
2State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
Jie An, Bao-Rong Chang, Li-Xin Xu 2016 Chin. Phys. Lett. 33 079801
Download: PDF(1075KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the cosmic constraint to the $w$CDM (cold dark matter with a constant equation of state $w$) model via 118 strong gravitational lensing systems which are compiled from SLACS, BELLS, LSD and SL2S surveys, where the ratio between two angular diameter distances $D^{\rm obs}=D_{\rm A}(z_{\rm l},z_{\rm s})/D_{\rm A}(0,z_{\rm s})$ is taken as a cosmic observable. To obtain this ratio, we adopt two strong lensing models: one is the singular isothermal sphere model (SIS) and the other one is the power-law density profile (PLP) model. Via the Markov chain Monte Carlo method, the posterior distribution of the cosmological model parameters space is obtained. The results show that the cosmological model parameters are not sensitive to the parameterized forms of the power-law index $\gamma$. Furthermore, the PLP model gives a relatively tighter constraint to the cosmological parameters than that of the SIS model. The predicted value of ${\it \Omega}_{\rm m}=0.31^{+0.44}_{-0.24}$ by the SIS model is compatible with that obtained by Planck2015: ${\it \Omega}_{\rm m}=0.313\pm0.013$. However, the value of ${\it \Omega}_{\rm m}=0.15^{+0.13}_{-0.11}$ based on the PLP model is smaller and has $1.25\sigma$ tension with that obtained by Planck2015.
Received: 07 April 2016      Published: 01 August 2016
PACS:  98.80.-k (Cosmology)  
  98.80.Es (Observational cosmology (including Hubble constant, distance scale, cosmological constant, early Universe, etc))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/7/079801       OR      https://cpl.iphy.ac.cn/Y2016/V33/I07/079801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jie An
Bao-Rong Chang
Li-Xin Xu
[1]Walsh D, Carswell R F and Weymann R J 1979 Nature 279 381
[2]Yang L, Xu L X and Yang W Q 2015 Chin. Phys. Lett. 32 059801
[3]Biesiada M 2006 Phys. Rev. D 73 023006
[4]Cao S, Biesiada M, Gavazzi R, Piorkowska A and Zhu Z H 2015 Astrophys. J. 806 185
[5]Biesiada M, Piorkowska A and Malec B 2010 Mon. Not. R. Astron. Soc. 406 1055
[6]Cao S and Zhu Z H 2012 J. Cosmol. Astropart. Phys. 03 016
[7]Wang N and Xu L 2013 Mod. Phys. Lett. A 28 1350057
[8]Zhu Z H 2000 Mod. Phys. Lett. A 15 1023
[9]Zhu Z H 2000 Int. J. Mod. Phys. D 9 591
[10]Chae K H 2003 Mon. Not. R. Astron. Soc. 346 746
[11]Mitchell J L et al 2005 Astrophys. J. 622 81
[12]Treu T, Koopmans L V, Bolton A S et al 2006 Astrophys. J. 640 662
[13]Koopmans L V E, Bolton A, Ture T et al 2009 Astrophys. J. 703 L51
[14]Kochanek C S 1996 Astrophys. J. 466 638
[15]Ofek E O, Rix H W and Maoz D 2003 Mon. Not. R. Astron. Soc. 343 639
[16]Chae K H and Mao S 2003 Astrophys. J. 599 L61
[17]Chae K H et al 2004 Astrophys. J. 607 L71
[18]Li X, Cao S, Zheng X, Biesiada M and Zhu Z H 2015 arXiv:1510.03494
[19]Liao K, Li Z, Cao C, Biesiada M, Zheng X and Zhu Z H 2015 arXiv:1511.01318
[20]Chen Y, Geng C, Cao S, Huang Y and Zhu Z 2015 J. Cosmol. Astropart. Phys. 2015 02010
[21]Eisenstein D J et al 2011 Astron. J. 142 72
[22]Brownstein et al 2012 Astrophys. J. 744 41
[23]Ruff A et al 2011 Astrophys. J. 727 96
[24]Sonnenfeld A et al 2013 Astrophys. J. 777 98
[25]Grillo C, Lombardi M et al 2008 Astron. Astrophys. 477 397
[26]J?rgensen I, Franx M and Kj?rgard P 1995 Mon. Not. R. Astron. Soc. 273 1097
[27]J?rgensen I, Franx M and Kj?rgard P 1995 Mon. Not. R. Astron. Soc. 276 1341
[28]Lewis A and Bridle S 2002 Phys. Rev. D 66 103511
[29]Ade P A R et al 2015 arXiv:1502.01589v2
Related articles from Frontiers Journals
[1] Jing Yang, Xin-Yan Fan, Chao-Jun Feng, and Xiang-Hua Zhai. Latest Data Constraint of Some Parameterized Dark Energy Models[J]. Chin. Phys. Lett., 2023, 40(1): 079801
[2] Jun Wang, Li-Jia Cao. Gravitational constant in f(R) theories of gravity with non-minimal coupling between matter and geometry[J]. Chin. Phys. Lett., 2018, 35(12): 079801
[3] Ya-Bo Wu, Xue Zhang, Bo-Hai Chen, Nan Zhang, Meng-Meng Wu. Energy Conditions and Constraints on the Generalized Non-Local Gravity Model[J]. Chin. Phys. Lett., 2017, 34(7): 079801
[4] D. Aberkane, N. Mebarki, S. Benchikh. Viscous Modified Chaplygin Gas in Classical and Loop Quantum Cosmology[J]. Chin. Phys. Lett., 2017, 34(6): 079801
[5] He-Kun Li, Pu-Xun Wu, Hong-Wei Yu. Test of the Cosmic Transparency with the Baryon Acoustic Oscillation and Type Ia Supernova Data[J]. Chin. Phys. Lett., 2016, 33(05): 079801
[6] Si-Yu Wu, Ya-Bo Wu, Yue-Yue Zhao, Xue Zhang, Cheng-Yuan Zhang, Bo-Hai Chen. Consistency Conditions and Constraints on Generalized $f(R)$ Gravity with Arbitrary Geometry-Matter Coupling[J]. Chin. Phys. Lett., 2016, 33(03): 079801
[7] Khurshudyan M., Pasqua A., Sadeghi J., Farahani H.. Quintessence Cosmology with an Effective Λ-Term in Lyra Manifold[J]. Chin. Phys. Lett., 2015, 32(10): 079801
[8] ZHU Wen-Tao, WU Pu-Xun, YU Hong-Wei. Constraining the Generalized and Superfluid Chaplygin Gas Models with the Sandage–Loeb Test[J]. Chin. Phys. Lett., 2015, 32(5): 079801
[9] YANG Lei, YANG Wei-Qiang, XU Li-Xin. Constraining Equation of State of Dark Matter: Including Weak Gravitational Lensing[J]. Chin. Phys. Lett., 2015, 32(5): 079801
[10] WU Ya-Bo, TONG Hai-Dan, YANG Hao, LU Jian-Bo, ZHAO Yue-Yue, LU Jun-Wang, ZHANG Xue. Reconstruction of New Holographic Chaplygin Gas Model with Viscosity[J]. Chin. Phys. Lett., 2014, 31(2): 079801
[11] Bob Osano. The Decoupling of Scalar-Modes from a Linearly Perturbed Dust-Filled Bianchi Type-I Model[J]. Chin. Phys. Lett., 2014, 31(1): 079801
[12] V. K. Shchigolev. Cosmology with an Effective Λ-Term in Lyra Manifold[J]. Chin. Phys. Lett., 2013, 30(11): 079801
[13] LI Hui, ZHANG Hong-Sheng, ZHANG Yi. A Generalized Semi-Holographic Universe[J]. Chin. Phys. Lett., 2013, 30(8): 079801
[14] WU Ya-Bo, ZHAO Yue-Yue, LU Jian-Bo, LI Jian, ZHANG Wen-Xin, CHANG Hong. The Generalized f(R) Model with Coupling in 5D Spacetime[J]. Chin. Phys. Lett., 2013, 30(6): 079801
[15] M. Farasat Shamir, Adil Jhangeer, and Akhlaq Ahmad Bhatti. Conserved Quantities in f(R) Gravity via Noether Symmetry[J]. Chin. Phys. Lett., 2012, 29(8): 079801
Viewed
Full text


Abstract