Chin. Phys. Lett.  2015, Vol. 32 Issue (11): 117202    DOI: 10.1088/0256-307X/32/11/117202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Al0.30Ga0.70N/GaN/Al0.07Ga0.93N Double Heterostructure High Electron Mobility Transistors with a Record Saturation Drain Current of 1050 mA/mm
LI Xiang-Dong, ZHANG Jin-Cheng**, GUO Zhen-Xing, JIANG Hai-Qing, ZOU Yu, ZHANG Wei-Hang, HE Yun-Long, JIANG Ren-Yuan, ZHAO Sheng-Lei, HAO Yue
Key Lab of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071
Cite this article:   
LI Xiang-Dong, ZHANG Jin-Cheng, GUO Zhen-Xing et al  2015 Chin. Phys. Lett. 32 117202
Download: PDF(1181KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report Al0.30Ga0.70N/GaN/Al0.07Ga0.93N double heterostructure high electron mobility transistors with a record saturation drain current of 1050 mA/mm. By optimizing the graded buffer layer and the GaN channel thickness, both the crystal quality and the device performance are improved significantly, including electron mobility promoted from 1535 to 1602 cm2/V?s, sheet carrier density improved from 0.87×1013 to 1.15×1013 cm?2, edge dislocation density reduced from 2.4×109 to 1.3×109 cm?2, saturation drain current promoted from 757 to record 1050 mA/mm, mesa leakage reduced by two orders in magnitude, and breakdown voltage promoted from 72 to 108 V.
Received: 07 July 2015      Published: 01 December 2015
PACS:  72.80.Ey (III-V and II-VI semiconductors)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Tv (Field effect devices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/11/117202       OR      https://cpl.iphy.ac.cn/Y2015/V32/I11/117202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Xiang-Dong
ZHANG Jin-Cheng
GUO Zhen-Xing
JIANG Hai-Qing
ZOU Yu
ZHANG Wei-Hang
HE Yun-Long
JIANG Ren-Yuan
ZHAO Sheng-Lei
HAO Yue
[1] Chen W J, Wong K Y, Huang W and Chen K J 2008 Appl. Phys. Lett. 92 253501
[2] Chen W J, Wong K Y and Chen K J 2009 IEEE Electron Device Lett. 30 430
[3] Maeda N, Saitoh T, Tsubaki K, Nishida T and Kobayashi N 2000 Appl. Phys. Lett. 76 3118
[4] Maeda N, Saitoh T, Tsubaki K, Nishida T and Kobayashi N 2001 Mater. Sci. Eng. B 82 232
[5] Cordier Y, Semond F, Hugues M, Natali F, Lorenzini P, Haas H, Chenot S, Laugt M, Tottereau O, Vennegues P and Massies J 2005 J. Cryst. Growth 278 393
[6] Liu J, Zhou Y, Zhu J, Lau K M and Chen K J 2006 IEEE Electron Device Lett. 27 10
[7] Shinohara K, Regan D, Milosavljevic I, Corrion A L, Brown D F, Willadsen P J, Butler C, Schmitz A, Kim S, Lee V, Ohoka A, Asbeck P M and Micovic M 2011 IEEE Electron Device Lett. 32 1074
[8] Meng F, Zhang J, Zhou H, Ma J, Xue J, Dang L, Zhang L, Lu M, Ai S, Li X and Hao Y 2012 J. Appl. Phys. 112 023707
[9] Peng E, Wang X, Xiao H, Wang C, Yin H, Chen H, Feng C, Jiang L, Hou X and Wang Z 2013 J. Alloys Compd. 576 48
[10] Wang X, Huang S, Zheng Y, Wei K, Chen X, Zhang H and Liu X 2014 IEEE Trans. Electron Devices 61 1341
[11] Lu C, Feng S, Wang D, Zhu X, Fan Z and Morkoc H 2004 IEEE 7th Int. Conf. Solid-State Integrated Circuits Technol. 3 2284
[12] Ma J, Zhang J, Xue J, Lin Z, Liu Z, Xue X, Ma X and Hao Y 2012 J. Semicond. 33 014002
[13] Bahat-Treidel E, Hilt O, Brunner F, Wurfl J and Trankle G 2008 IEEE Trans. Electron Devices 55 3354
[14] Wang C K, Chang S J, Su Y K, Chiou Y Z, Kuo C H, Chang C S, Lin T K, Ko T K and Tang J J 2005 Jpn. J. Appl. Phys. 44 2458
[15] Moram M A and Vickers M E 2009 Rep. Prog. Phys. 72 036502
[16] Ou X X 2011 Master Dissertation (Xi'an: Xidian University) (in Chinese)
[17] Yu H, Lisesivdin S B, Bolukbas B, Kelekci O, Ozturk M K, Ozcelik S, Caliskan D, Ozturk M, Cakmak H, Demirel P and Ozbay E 2010 Phys. Status Solidi A 207 2593
[18] Bahat-Treidel E, Hilt O, Brunner F, Sidorov V, Würfl J and Tr?nkle G 2010 IEEE Trans. Electron Devices 57 3050
[19] Zanandrea A, Bahat-Treidel E, Rampazzo F, Stocco A, Meneghini M, Zanoni E, Hilt O, Ivo P, Wuerfl J and Meneghesso G 2012 Microelectron. Reliab. 52 2426
[20] Liu L, Lo C, Xi Y, Ren F, Pearton S J, Laboutin O, Cao Y, Johnson J W and Kravchenko I I 2013 J. Vac. Sci. Technol. B 31 011805
[21] Ravikiran L, Dharmarasu N, Radhakrishnan K, Agrawa M, Lin Y, Arulkumaran S, Vicknesh S and Ng G I 2015 J. Appl. Phys. 117 025301
[22] Miller E J, Dang X Z and Yu E T 2000 J. Appl. Phys. 88 5951
[23] Liu Y, Singh S P, Ngoo Y J, Kyaw L M, Bera M K, Lo Q Q and Chor E F 2014 J. Vac. Sci. Technol. B 32 032201
Related articles from Frontiers Journals
[1] Yongyong You , Tianran Jiang , and Tianshu Lai. A Simple Time-Resolved Optical Measurement of Diffusion Transport Dynamics of Photoexcited Carriers and Its Demonstration in Intrinsic GaAs Films[J]. Chin. Phys. Lett., 2020, 37(8): 117202
[2] Li Zhang, Jin-Feng Zhang, Wei-Hang Zhang, Tao Zhang, Lei Xu, Jin-Cheng Zhang, Yue Hao. Robust Performance of AlGaN-Channel Metal-Insulator-Semiconductor High-Electron-Mobility Transistors at High Temperatures[J]. Chin. Phys. Lett., 2017, 34(12): 117202
[3] LI Xiang-Dong, ZHANG Jin-Cheng, ZOU Yu, MA Xue-Zhi, LIU Chang, ZHANG Wei-Hang, WEN Hui-Juan, HAO Yue. AlGaN Channel High Electron Mobility Transistors with an AlxGa1?xN/GaN Composite Buffer Layer[J]. Chin. Phys. Lett., 2015, 32(07): 117202
[4] FANG Yu-Long, FENG Zhi-Hong, LI Cheng-Ming, SONG Xu-Bo, YIN Jia-Yun, ZHOU Xing-Ye, WANG Yuan-Gang, LV Yuan-Jie, CAI Shu-Jun. High-Temperature Performance Analysis of AlGaN/GaN Polarization Doped Field Effect Transistors Based on the Quasi-Multi-Channel Model[J]. Chin. Phys. Lett., 2015, 32(03): 117202
[5] WANG Guang-Bing, ZHAO Guo-Zhong, ZHENG Xian-Tong, WANG Ping, CHEN Guang, RONG Xin, WANG Xin-Qiang. Growth of a-Plane InN Film and Its THz Emission[J]. Chin. Phys. Lett., 2014, 31(07): 117202
[6] JI Xiao-Fan, XU Zheng, CAO Shuo, QIU Kang-Sheng, TANG Jing, ZHANG Xi-Tian, XU Xiu-Lai. Single-ZnO-Nanobelt-Based Single-Electron Transistors[J]. Chin. Phys. Lett., 2014, 31(06): 117202
[7] YU Xin-Xin, NI Jin-Yu, LI Zhong-Hui, KONG Cen, ZHOU Jian-Jun, DONG Xun, PAN Lei, KONG Yue-Chan, CHEN Tang-Sheng. AlGaN/GaN HEMTs on 4-Inch Silicon Substrates in the Presence of 2.7-µm -Thick Epilayers with the Maximum Off-State Breakdown Voltage of 500 V[J]. Chin. Phys. Lett., 2014, 31(03): 117202
[8] HA Wei, ZHANG Jin-Cheng, ZHAO Sheng-Lei, GE Sha-Sha, WEN Hui-Juan, ZHANG Chun-Fu, MA Xiao-Hua, HAO Yue. AlGaN Channel High Electron Mobility Transistors with Ultra-Low Drain-Induced-Barrier-Lowering Coefficient[J]. Chin. Phys. Lett., 2013, 30(12): 117202
[9] WEI Ling, ZHANG Wei-Feng. A Win-Win Effect for Both the Ferromagnetism and the Dopability of p-Type Doping in ZnO:(Cu+N)[J]. Chin. Phys. Lett., 2013, 30(8): 117202
[10] WANG Zhi-Gang, CHEN Wan-Jun, ZHANG Bo, LI Zhao-Ji. A Novel Controllable Hybrid-Anode AlGaN/GaN Field-Effect Rectifier with Low Operation Voltage[J]. Chin. Phys. Lett., 2012, 29(10): 117202
[11] SHI Wei, TAI Qiang, XIA Xian-Hai, YI Ming-Dong, XIE Ling-Hai, FAN Qu-Li, WANG Lian-Hui, WEI Ang, and HUANG Wei. Unipolar Resistive Switching Effects Based on Al/ZnO/P++-Si Diodes for Nonvolatile Memory Applications[J]. Chin. Phys. Lett., 2012, 29(8): 117202
[12] WANG Jian-Hui, WANG Xin-Hua, PANG Lei, CHEN Xiao-Juan, JIN Zhi, and LIU Xin-Yu. Determination of Channel Temperature in AlGaN/GaN HEMTs by Pulsed IV Characteristics[J]. Chin. Phys. Lett., 2012, 29(8): 117202
[13] YAN Da-Wei, ZHU Zhao-Min, CHENG Jian-Min, GU Xiao-Feng, and LU Hai. Forward Current Transport Mechanism and Schottky Barrier Characteristics of a Ni/Au Contact on n-GaN[J]. Chin. Phys. Lett., 2012, 29(8): 117202
[14] CAO Xiao-Long, WANG Yu-Ye, XU De-Gang, **, ZHONG Kai, LI Jing-Hui, LI Zhong-Yang, ZHU Neng-Nian, YAO Jian-Quan,. THz-Wave Difference Frequency Generation by Phase-Matching in GaAs/AlxGa1−xAs Asymmetric Quantum Well[J]. Chin. Phys. Lett., 2012, 29(1): 117202
[15] LIU Sheng-Hou, CAI Yong**, GONG Ru-Min, WANG Jin-Yan, ZENG Chun-Hong, SHI Wen-Hua, FENG Zhi-Hong, WANG Jing-Jing, YIN Jia-Yun, Cheng P. Wen, QIN Hua, ZHANG Bao-Shun . Enhancement-Mode AlGaN/GaN High Electron Mobility Transistors Using a Nano-Channel Array Structure[J]. Chin. Phys. Lett., 2011, 28(7): 117202
Viewed
Full text


Abstract