Chin. Phys. Lett.  2015, Vol. 32 Issue (03): 032901    DOI: 10.1088/0256-307X/32/3/032901
NUCLEAR PHYSICS |
Comparison of Experiment and Simulation of the triple GEM-Based Fast Neutron Detector
WANG Xiao-Dong1, ZHANG Jun-Wei2, HU Bi-Tao3**, YANG He-Run2, DUAN Li-Min2, LU Chen-Gui2, HU Rong-Jiang2, ZHANG Chun-Hui3, ZHOU Jian-Rong4, YANG Lei3, AN Lv-Xing5, LUO Wen1
1School of Nuclear Science and Technology, University of South China, Hengyang 421001
2Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000
3School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000
4Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
5LWD Logging Center, China Petroleum Logging, CO. LTD., Xi'an 710000
Cite this article:   
WANG Xiao-Dong, ZHANG Jun-Wei, HU Bi-Tao et al  2015 Chin. Phys. Lett. 32 032901
Download: PDF(565KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract neutrons based on a 10×10 cm2 triple gas electron multiplier (GEM) device is developed and tested. A neutron converter, which is a high density polyethylene (HDPE) layer, is combined with the triple GEM detector cathode and placed inside the detector, in the path of the incident neutrons. The detector is tested by obtaining the energy deposition spectrum with an Am Be neutron source in the Institute of Modern Physics (IMP) at Lanzhou. In the present work we report the results of the tests and compare them with those of simulations. The transport of fast neutrons and their interactions with the different materials in the detector are simulated with the GEANT4 code, to understand the experimental results. The detector displays a clear response to the incident fast neutrons. However, an unexpected disagreement in the energy dependence of the response between the simulated and measured spectra is observed. The neutron sources used in our simulation include deuterium-tritium (DT, 14 MeV), deuterium-deuterium (DD, 2.45 MeV), and Am Be sources. The simulation results also show that among the secondary particles generated by the incident neutron, the main contributions to the total energy deposition are from recoil protons induced in hydrogen-rich HDPE or Kapton (GEM material), and activation photons induced by neutron interaction with Ar atoms. Their contributions account for 90% of the total energy deposition. In addition, the dependence of neutron deposited energy spectrum on the composition of the gas mixture is presented.
Published: 26 February 2015
PACS:  29.40.Gx (Tracking and position-sensitive detectors)  
  29.40.Cs (Gas-filled counters: ionization chambers, proportional, and avalanche counters)  
  07.05.Tp (Computer modeling and simulation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/3/032901       OR      https://cpl.iphy.ac.cn/Y2015/V32/I03/032901
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Xiao-Dong
ZHANG Jun-Wei
HU Bi-Tao
YANG He-Run
DUAN Li-Min
LU Chen-Gui
HU Rong-Jiang
ZHANG Chun-Hui
ZHOU Jian-Rong
YANG Lei
AN Lv-Xing
LUO Wen
[1] Hausladen P A et al 2007 Nucl. Instrum. Methods Phys. Res. Sect. B 261 387
[2] Gnanvo K et al 2011 Nucl. Instrum. Methods Phys. Res. Sect. A 652 16
[3] Bencivenni G et al 2002 Nucl. Instrum. Methods Phys. Res. Sect. A 494 156
[4] Sauli F 1997 Nucl. Instrum. Methods Phys. Res. Sect. A 386 531
[5] An L X et al 2013 Sci. Chin. Technolog. Sci. 43 315 (in Chinese)
[6] Wang X D et al 2013 Sci. Chin. Phys. Mech. Astron. 56 1740
[7] Wang Y F et al 2013 Sci. Chin. Phys. Mech. Astron. 56 1897
[8] Yang H R et al 2008 Acta Phys. Sin. 57 2141 (in Chinese)
[9] Croci G et al 2013 Nucl. Instrum. Methods Phys. Res. Sect. A 712 108
[10] Esposito B et al 2014 Nucl. Instrum. Methods Phys. Res. Sect. A 741 196
Related articles from Frontiers Journals
[1] HU Kun, LU Hou-Bing, WANG Xu, LI Feng, HAN Liang, JIN Ge. The Improved Design of Multi-channel Thin Gap Chamber Simulation Signal Source for the ATLAS Detector Upgrade[J]. Chin. Phys. Lett., 2015, 32(08): 032901
[2] HU Kun, LI Feng, CHEN Lian, LIANG Fu-Tian, JIN Ge. An FPGA-Based Pulse Pile-up Rejection Technique for Photon Counting Imaging Detectors[J]. Chin. Phys. Lett., 2015, 32(03): 032901
[3] WU Tao. Mass Resolution versus Chamber Resolution in ALICE Dimuon Forward Spectrometer[J]. Chin. Phys. Lett., 2007, 24(6): 032901
[4] ZHAO Kui, WU Xiu-Kun, GUO Ji-Yu, SUI Li, MEI Jun-Ping, NI Mei-Nan, BAO Yi-Wen. An Atomic Force Microscopy Investigation of the Tracks Made by C+1-C+4 Bombardment on CR-39 Detectors[J]. Chin. Phys. Lett., 2003, 20(11): 032901
Viewed
Full text


Abstract