Chin. Phys. Lett.  2014, Vol. 31 Issue (05): 052901    DOI: 10.1088/0256-307X/31/5/052901
NUCLEAR PHYSICS |
Deuterium Retention in the Co-Deposition Carbon Layers Deposited by Radio-Frequency Magnetron Sputtering in D2 Atmosphere
ZHANG Wei-Yuan1,2, SHI Li-Qun1,2**, ZHANG Bin1,2, HU Jian-Sheng3
1Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Fudan University, Shanghai 200433
2Department of Nuclear Science and Technology, Fudan University, Shanghai 200433
3Institute of Plasma Physics, Chinese Academic of Sciences, Hefei 230031
Cite this article:   
ZHANG Wei-Yuan, SHI Li-Qun, ZHANG Bin et al  2014 Chin. Phys. Lett. 31 052901
Download: PDF(941KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Carbon is deposited on C and Si substrates by rf magnetron plasma sputtering in a D2 atmosphere. The deposited layers are examined with ion beam analysis and thermal desorption spectroscopy (TDS). The growth rates of the layers deposited on Si decrease with increasing substrate temperature, while increase significantly with the increase of D2 pressure. Meanwhile, the deuterium concentrations in the layers deposited on the Si substrates decrease from 30% to 2% and from 31% to 1% on the C substrates, respectively, when the substrate temperature varies from 350 K to 900 K. Similarly, the D concentration in the layer on the Si substrates increases from 3.4% to 47%, and from 8% to 35% on the C substrates when the D2 pressure increases from 0.3 Pa to 8.0 Pa. D desorption characterized by TDS is mainly in the forms of D2, HD, HDO, CD4, and C2D4, and a similar release peak occurs at 645 K. The release peak of D2 molecules at 960 K can be attributed to the escaped gas from the thin co-deposited deuterium-rich carbon layer in the form of C–D bonding.
Published: 24 April 2014
PACS:  29.25.-t (Particle sources and targets)  
  29.27.-a (Beams in particle accelerators)  
  29.40.Wk (Solid-state detectors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/5/052901       OR      https://cpl.iphy.ac.cn/Y2014/V31/I05/052901
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Wei-Yuan
SHI Li-Qun
ZHANG Bin
HU Jian-Sheng
[1] Shu W M, Ohira S, Gentile C A, Oya Y, Nakamura H et al 2001 J. Nucl. Mater. 290 482
[2] Tsitrone E, Reiter D, Loarer T, Brosset C, Bucalossi J et al 2005 J. Nucl. Mater. 337 539
[3] Janeschitz G, Ando T, Antipenkov A, Barabash V et al 1998 Fusion Eng. Des. 39 173
[4] Enoeda M, Akiba M, Tanaka S, Shimizu A et al 2006 Fusion Eng. Des. 81 415
[5] Shimada M, Campbell D J, Mukhovatov V et al 2007 Nucl. Fusion 47 S1
[6] Houtte D V, Martin G, Becoulet A et al 2004 Nucl. Fusion 44 L11
[7] Sugiyama K, Krieger K, Lungn C P and Roth J 2009 J. Nucl. Mater. 390 659
[8] Philipps V, Roth J and Loarte A 2003 Plasma Phys. Controlled Fusion 45 A17
[9] Dylla H F, TFTR Team, Bell M G et al 1987 J. Nucl. Mater. 145 48
[10] Hino T 1998 Fusion Eng. Des. 39 439
[11] Lee H T, Haasz A A, Davis J W, Macaulay-Newcombe R G, Whyte D G and Wright G M 2007 J. Nucl. Mater. 363 898
[12] Nagata S, Tsuchiya B, Sugawara T, Ohtsu N and Shikama T 2002 J. Nucl. Mater. 307 1513
[13] Causey R A 2002 J. Nucl. Mater. 300 91
[14] Rohde V, Maier H, Krieger K et al 2001 J. Nucl. Mater. 290 317
[15] Whyte D G, Coad J P, Franzen P and Maier H 1999 Nucl. Fusion 39 1025
[16] Peacock A T, Andrew P, Cetier P, Coad J P, Federici G, Hurd F H, Pick M A and Wu C H 1999 J. Nucl. Mater. 266 423
[17] Rubel M, Wienhold P and Hildebrandt D 2001 J. Nucl. Mater. 290 473
[18] Mayer M, Philipps V, Wienhold P, Esser H G et al 2001 J. Nucl. Mater. 290 381
[19] Schiettekatte F and Ross G G 1996 AIP Conf. Proc. 392 711
[20] Kimura K, Nakajima K and Imura H 1998 Nucl. Instrum. Methods Phys. Res. Sect. B 140 397
[21] Oshiro T, Begum F, Yamazato M, Higa A, Maehama T and Toguchi M 2006 Thin Solid Films 506 92
[22] Nagata S, Tsuchiya B, Sugawara T, Ohtsu N and Shikama T 2002 J. Nucl. Mater. 307 1513
[23] Ziegler J F and Briersack J P 2009 The Stopping and Range of Ions in Solids (Chester: SRIM company)
[24] Sze F C, Chousal L, Doerner R P and Luckhardt S 1999 J. Nucl. Mater. 266 1212
[25] Jacob W 1998 Thin Solid Films 326 1
[26] Hino T, Yoshida H, Akiba M, Suzuki S, Hirohata Y et al 2005 Nucl. Fusion 45 894
[27] Von Keudell A and M?ller W 1994 J. Appl. Phys. 75 7718
[28] Deutsch H, Kersten H, Klagge S and Rutscher A 1988 Contrib. Plasma Phys. 28 149
[29] Yamauchi Y, Hirohata Y and Hino T 1998 Fusion Eng. Des. 39 427
[30] Yosida H, Tanighchi M, Yokoyama K et al 2004 J. Nucl. Mater. 329 790
[31] Kolbasov B N, Stankevich V G, Svechnikov N Yu et al 2011 J. Nucl. Mater. 415 S266
[32] Liu C Z and Shi L 2004 Chin. Phys. Lett. 21 1035
[33] Causey R A 1989 J. Nucl. Mater. 162 151
Related articles from Frontiers Journals
[1] DONG Ke-Jun, HE Ming, LI Zhen-Yu, WANG Xiang-Gao, LI Chao-Li, YOU Qu-Bo, BAO Yi-Wen, WU Shao-Yong, SHEN Hong-Tao, GUAN Yong-Jing, ZHANG Wei, FAN Jin-Long, YANG Lei, SUN Hong-Qing, DING You-Qian, HE Guo-Zhu, LI Shi-Zhuo, GONG Jie, HE Xian-Wen, LU Li-Yan, WANG Wei, HU Yue-Ming, YUAN Jian, ZHANG Sheng-Dong, CHANG Yong-Fu, JIANG Shan** . Progress in AMS Measurement of 182Hf at CIAE[J]. Chin. Phys. Lett., 2010, 27(11): 052901
[2] FENG Guo-Qiang, YANG Shan-Qing, TU Liang-Cheng, LUO Jun. Improvement of Test of Solar Neutrino Coherent Scattering with Torsion Pendulum[J]. Chin. Phys. Lett., 2006, 23(8): 052901
[3] LUO Jun, CHEN Xiao, LI Jianguo, FAN Shuhua, LI Fangyu. Test of Abnormally Large Coherent Scattering Cross Section Using Solar-Neutrino[J]. Chin. Phys. Lett., 1995, 12(3): 052901
Viewed
Full text


Abstract