CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Optoelectronic Properties, Elastic Moduli and Thermoelectricity of SrAlGa: An Ab Initio Study |
Roshan Ali1, G. Murtaza2**, Y. Takagiwa3, R. Khenata4, Haleem Uddin2, H. Ullah1, S. A. Khan2 |
1Department of Physics, Government Post Graduate, Jahanzeb College, Saidu sharif, Swat, Pakistan 2Materials Modeling Lab, Department of Physics, Islamia College University, Peshawar 3Department of Advanced Materials Science, The University of Tokyo, Japan 4LPQ3M Laboratory, Institute of Science and Technology, University of Mascara, Algeria
|
|
Cite this article: |
Roshan Ali, G. Murtaza, Y. Takagiwa et al 2014 Chin. Phys. Lett. 31 047102 |
|
|
Abstract Half-Heusler compounds are an impressive class of materials with a huge potential for different applications such as in future energy, especially in the fields of thermoelectrics and solar cells. We present ab initio total energy calculations within the modified Becke–Johnson generalized gradient approximation (mBJ-GGA) to obtain the physical properties of SrAlGa compounds. The structural, elastic, acoustic, electronic, chemical bonding, optical, and thermoelectric properties are calculated and compared with the available calculation data. The SrAlGa is found to be a small-band-gap (0.125–0.175 eV) material, suitable for thermoelectric applications with a relatively high Seebeck coefficient. Also, SrAlGa has the potential in the optoelectronic applications due to high optical conductivity and reflectivity in the infrared and visible region of electromagnetic spectra.
|
|
Received: 25 November 2013
Published: 25 March 2014
|
|
PACS: |
71.15.Ap
|
(Basis sets (LCAO, plane-wave, APW, etc.) and related methodology (scattering methods, ASA, linearized methods, etc.))
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.15.Nc
|
(Total energy and cohesive energy calculations)
|
|
|
|
|
[1] Casper F, Graf T, Chadov S, Balke B and Felser C 2012 Semicond. Sci. Technol. 27 063001 [2] Asahi R, Morikawa T, Hazama H and Matsubara M 2008 J. Phys.: Condens. Matter 20 64227 [3] Poon S J 2001 Recent Trends in Thermoelectric Materials Research II, Semiconductors and Semimetals vol 70 ed Tritt T M (New York: Academic) p 37 [4] ?güt S and Rabe K M 1995 Phys. Rev. B 51 10443 [5] Jung D, Koo H J and Whangbo M H 2000 J. Mol. Struct.: THEOCHEM 527 113 [6] Kandpal H C, Felser C and Seshadri R 2006 J. Phys. D: Appl. Phys. 39 776 [7] Gruhn T 2010 Phys. Rev. B 82 125210 [8] Chadov S, Qi X, Kubler J, Fecher G H, Felser C and Zhang S C 2010 Nat. Mater. 9 541 [9] Lin H, Wray A, Xia Y, Xu S, Jia S, Cava R J, Bansil A and Hasan M Z 2010 Nat. Mater. 9 546 [10] Felser C, Fecher G H and Balke B 2007 Angew. Chem. Int. Ed. 46 668 [11] Shen Q, Chen L, Goto T, Hirai T, Yang J, Meisner G P, Uher C 2001 Appl. Phys. Lett. 79 4165 [12] Nolas G S, Poon J, Kanatzidis M G 2006 MRS Bull. 31 199 [13] Balke B, Barth J, Schwall M, Fecher G H, Felser C 2011 J. Electron. Mater. 40 702 [14] Anindya R, Joseph W B, Karin M R and David V 2012 Phys. Rev. Lett. 109 037602 [15] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 Wien2k An Augmented Plane Wave Plus Local Orbital Program for Calculating Crystal Properties (Technische Universit ?t Wien Austria) [16] Koelling D D 1972 J. Phys. Chem. Solids 33 1335 [17] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 [18] Wu Z and Cohen R E 2006 Phys. Rev. B 73 235116 [19] Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401 [20] Wong K M, Alay-e-Abbas S M, Shaukat A, Fang Y and Lei Y 2013 J. Appl. Phys. 113 014304 [21] Wong K M, Alay-e-Abbas S M, Fang Y, Shaukat A and Lei Y 2013 J. Appl. Phys. 114 034901 [22] Murnaghan F D 1944 Proc. Natl. Acad. Sci. U.S.A. 30 244 [23] Wang J and Yip S 1993 Phys. Rev. Lett. 71 4182 [24] Tvergaard V and Hutshinson J W 1988 J. Am. Ceram. Soc. 71 157 [25] Hill R 1952 Proc. Phys. Soc. London A 65 349 [26] Voigt W 1928 Lehrbush der Kristallphysik (Taubner, Leipzig) [27] Reuss A and Angew A 1929 Mater. Phys. 9 49 [28] Wu Z J, Zhao E J, Xiang H P, Hao X F and Liu X J 2007 Phys. Rev. B 76 054115 [29] Peng F, Chen D, Fu H and Cheng X 2009 Phys. Status Solidi B 246 71 [30] Fu H, Li D, Peng F, Gao T and Cheng X 2008 Comput. Mater. Sci. 44 774 [31] Pugh S F 1954 Philos. Mag. 45 823 [32] Frantsevich I N, Voronov F F and Bokuta S A 1983 Elastic Constants and Elastic Moduli of Metals and Insulators Handbook ed Frantsevich I N (Naukova Dumka, Kiev) pp 60–180 [33] Johnston G, Keeler R, Rollins and Spicklemire S 1996 The Consortium for Upper-Level Physics Software (New York: John Wiley) [34] Schreiber E, Anderson O L and Soga N 1973 Elastic Constants and Their Measurement (New York: McGraw-Hill) [35] Engel E and Vosko S H 1993 Phys. Rev. B 47 13164 [36] Gruhn T 2010 Phys. Rev. B 82 125210 [37] Mahan G D and Sofo J O 1996 Proc. Natl. Acad. Sci. U.S.A. 93 7436 [38] Rao A, Ji X and Tritt T M 2006 Mater. Res. Bull. 31 218 [39] Kandpal H C, Felser C and Seshadri R 2006 J. Phys. D 39 776 [40] Madsen G K H and Singh D J 2006 Comput. Phys. Commun. 175 67 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|