Chin. Phys. Lett.  2014, Vol. 31 Issue (2): 023201    DOI: 10.1088/0256-307X/31/2/023201
ATOMIC AND MOLECULAR PHYSICS |
High-l Rydberg States' Interference Using a Double-Pulse Electric Field
CHEN Jie, ZHANG Hao, BAO Shan-Xia, WANG Li-Mei, ZHANG Lin-Jie, LI Chang-Yong, ZHAO Jian-Ming**, JIA Suo-Tang
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006
Cite this article:   
CHEN Jie, ZHANG Hao, BAO Shan-Xia et al  2014 Chin. Phys. Lett. 31 023201
Download: PDF(668KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The interference behavior of high-l Rydberg states is investigated in external fields. We prepare high-l states from an initial excited ns Cs Rydberg state by applying one electric-field pulse. The interference between the initial ns state and the high-l states is investigated by two time-delayed short electric-field pulses. The state selective field ionization technique is used to measure the transfer ratio versus the field pulses parameters. The visibility of interference is defined to describe interference and the results show that a relative long duration of electric-field pulse will weaken the interference.
Received: 01 November 2013      Published: 28 February 2014
PACS:  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  32.70.Cs (Oscillator strengths, lifetimes, transition moments)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/2/023201       OR      https://cpl.iphy.ac.cn/Y2014/V31/I2/023201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Jie
ZHANG Hao
BAO Shan-Xia
WANG Li-Mei
ZHANG Lin-Jie
LI Chang-Yong
ZHAO Jian-Ming
JIA Suo-Tang
[1] Qi R, Yu X L, Li Z B and Liu W M 2009 Phys. Rev. Lett. 102 185301
[2] Liang Z X, Zhang Z D and Liu W M 2005 Phys. Rev. Lett. 94 050402
[3] Liu W M, Wu B, and Niu Q 2000 Phys. Rev. Lett. 84 2294
[4] Sedlacek J A, Schwettmann A, Kübler H, L?w R, Pfau T and Shaffer J P 2012 Nat. Phys. 8 819
[5] Sedlacek J A, Schwettmann A, Kübler H and Shaffer J P 2013 Phys. Rev. Lett. 111 063001
[6] Tong D, Farooqi S M, Stanojevic J, Krishnan S, Zhang Y P, C?tê R, Eyler E E and Gould P L 2004 Phys. Rev. Lett. 93 063001
Singer K, Reetz-Lamour M, Amthor T, Marcassa L and Weidemüller M 2004 Phys. Rev. Lett. 93 163001
[7] Vogt T, Viteau M, Zhao J M, Chotia A, Comparat D and Pillet P 2006 Phys. Rev. Lett. 97 083003
Vogt T, Viteau M, Chotia A, Zhao J M, Comparat D and Pillet P 2007 Phys. Rev. Lett. 99 073002
[8] Heidemann R, Raitzsch U, Bendkowsky V, Butscher B, L?w, L, Santos R and Pfau T 2007 Phys. Rev. Lett. 99 163601
[9] Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D D, Walker T G and Saffman M 2009 Nat. Phys. 5 110
Ga?tan A, Miroshnychenko Y, Wilk T, Chotia A, Viteau M, Comparat D, Pillet P, Browaeys A and Grangier P 2009 Nat. Phys. 5 115
[10] Jaksch D, Cirac J I and Zoller P, Rolston S L, Cote R and Lukin M D 2000 Phys. Rev. Lett. 85 2208
Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G and Saffman M 2010 Phys. Rev. Lett. 104 010503
[11] Maxwell D, Szwer D J, Paredes-Barato D, Busche H, Pritchard J D, Gauguet A, Weatherill K J, Jones M P A and Adams C S 2013 Phys. Rev. Lett. 110 103001
[12] Zimmerman M L, Littman M G, Kash M M and Kleppner D 1979 Phys. Rev. A 20 2251
[13] Stoneman R C, Janik G and Gallagher T F 1986 Phys. Rev. A 34 2952
[14] Nosbaum P, Bleton A, Cabaret L, Yu J, Gallagher T F and Pillet P 1995 J. Phys. B: At. Mol. Opt. Phys. 28 1707
[15] Wang L M, Zhang H, Li C Y, Zhao J M and Jia S T 2013 Acta Phys. Sin. 62 013201
[16] Teranishi Y and Nakamura H 1998 Phys. Rev. Lett. 81 2032
[17] Tannian B E, Stokely C L, Dunning F B, Reinhold C O and Burgd?rfer J 1999 J. Phys. B: At. Mol. Opt. Phys. 32 L517
[18] Betz V and Goddard B D 2009 Phys. Rev. Lett. 103 213001
[19] Zhang H, Wang L M, Zhang L J, Li C Y, Xiao L T, Zhao J M, Jia S T, Cheinet P, Comparat D and Pillet P 2013 Phys. Rev. A 87 033405
[20] Salour M M and Cohen-Tannoudji C 1977 Phys. Rev. Lett. 38 757
[21] Jeys T H, Foltz G W, Smith K A, Beiting E J, Kellert F G, Dunning F B and Stebbings R F 1980 Phys. Rev. Lett. 44 390
[22] Overstreet K R, Schwettmann A, Tallant J, Booth D and Shaffer J P 2009 Nat. Phys. 5 581
[23] Tallant J, Rittenhouse S T, Booth D, Sadeghpour H R and Shaffer J P 2012 Phys. Rev. Lett. 109 173202
Related articles from Frontiers Journals
[1] Jing Zhao, Jinlei Liu, Xiaowei Wang, Jianmin Yuan, and Zengxiu Zhao. Real-Time Observation of Electron-Hole Coherence Induced by Strong-Field Ionization[J]. Chin. Phys. Lett., 2022, 39(12): 023201
[2] Yingbin Li, Lingling Qin, Aihua Liu, Ke Zhang, Qingbin Tang, Chunyang Zhai, Jingkun Xu, Shi Chen, Benhai Yu, and Jing Chen. Manipulating Nonsequential Double Ionization of Argon Atoms via Orthogonal Two-Color Field[J]. Chin. Phys. Lett., 2022, 39(9): 023201
[3] Zhi-Lei Xiao, Wei Quan, Song-Po Xu, Shao-Gang Yu, Xuan-Yang Lai, Jing Chen, Xiao-Jun Liu. Nonadiabatic and Multielectron Effects in the Attoclock Experimental Scheme[J]. Chin. Phys. Lett., 2020, 37(4): 023201
[4] Long Xu, Li-Bin Fu. Understanding Tunneling Ionization of Atoms in Laser Fields using the Principle of Multiphoton Absorption[J]. Chin. Phys. Lett., 2019, 36(4): 023201
[5] Wen-Bin He, Xi-Wen Guan. Exact Entanglement Dynamics in Three Interacting Qubits[J]. Chin. Phys. Lett., 2018, 35(11): 023201
[6] Bin Zhang, Jian Zhao, Zeng-Xiu Zhao. Multi-Electron Effects in Attosecond Transient Absorption of CO Molecules[J]. Chin. Phys. Lett., 2018, 35(4): 023201
[7] Jian-Hong Chen, Song-Feng Zhao, Guo-Li Wang, Xiao-Ping Zheng, Zheng-Rong Zhang. Angle-Resolved Electron Spectra of F$^{-}$ Ions by Few-Cycle Laser Pulses[J]. Chin. Phys. Lett., 2017, 34(6): 023201
[8] M. Salehi, S. Mirzanejad. Producing High Intense Attosecond Pulse Train by Interaction of Three-Color Pulse and Overdense Plasma[J]. Chin. Phys. Lett., 2017, 34(5): 023201
[9] Jian-Xing Hao, Xiao-Lei Hao, Wei-Dong Li, Shi-Lin Hu, Jing Chen. Controlling Three-Dimensional Electron–Electron Correlation via Elliptically Polarized Intense Laser Field[J]. Chin. Phys. Lett., 2017, 34(4): 023201
[10] Shao-Yang Dai, Kun-Qian Li, Yue-Yang Zhai, Wei Xia, Qing Wang, Wei Xiong, Xiang-Hui Qi, Xu-Zong Chen. Absolutely Direct Frequency Measurement of Two-Photon Transition Using Multi-Peak Fitting Approach[J]. Chin. Phys. Lett., 2017, 34(1): 023201
[11] Hong-Dan Zhang, Jing Guo, Yan Shi, Hui Du, Hai-Feng Liu, Xu-Ri Huang, Xue-Shen Liu, Jun Jing. Exploration of High-Harmonic Generation from the CS$_2$ Molecule by the Lewenstein Method in Two-Color Circularly Polarized Laser Field[J]. Chin. Phys. Lett., 2017, 34(1): 023201
[12] Xin-Hai Tu, Xiao-Lei Hao, Wei-Dong Li, Shi-Lin Hu, Jing Chen. Nonadiabatic Effect on the Rescattering Trajectories of Electrons in Strong Laser Field Ionization Process[J]. Chin. Phys. Lett., 2016, 33(09): 023201
[13] Wei Xia, Shao-Yang Dai, Yin Zhang, Kun-Qian Li, Qi Yu, Xu-Zong Chen. Precision Frequency Measurement of $^{87}$Rb 5$S_{1/2}$ ($F=2$)$\to$5$D_{5/2}$ ($F''=4$) Two-Photon Transition through a Fiber-Based Optical Frequency Comb[J]. Chin. Phys. Lett., 2016, 33(05): 023201
[14] XIA Chang-Long, MIAO Xiang-Yang. Generation of Linear Isolated Sub-60 Attosecond Pulses by Combining a Circularly Polarized Pulse with an Elliptically Polarized Pulse[J]. Chin. Phys. Lett., 2015, 32(4): 023201
[15] WANG Chuan-Liang, SUN Ren-Ping, CHEN Yong-Ju, GONG Cheng, LAI Xuan-Yang, KANG Hui-Peng, QUAN Wei, LIU Xiao-Jun. Above-Threshold Ionization of Xenon by Chirped Intense Laser Pulses[J]. Chin. Phys. Lett., 2014, 31(06): 023201
Viewed
Full text


Abstract