Chin. Phys. Lett.  2013, Vol. 30 Issue (4): 047501    DOI: 10.1088/0256-307X/30/4/047501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Room-Temperature Ferromagnetism in Fe/Sn-Codoped In2O3 Powders and Thin Films
JIANG Feng-Xian1, XI Shi-Bo2, MA Rong-Rong1, QIN Xiu-Fang1, FAN Xiao-Chen1, ZHANG Min-Gang3, ZHOU Jun-Qi3, XU Xiao-Hong1**
1Key Laboratory of Magnetic Molecules and Magnetic Information Material (Ministry of Education), School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004
2Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
3School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024
Cite this article:   
JIANG Feng-Xian, XI Shi-Bo, MA Rong-Rong et al  2013 Chin. Phys. Lett. 30 047501
Download: PDF(704KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Fe/Sn-codoped In2O3 powders and films are prepared by a vacuum annealing process and a pulsed laser deposition technique, respectively. The structural and magnetic properties of the samples are investigated. The obvious room-temperature ferromagnetism is observed in both (In0.92Fe0.05Sn0.03)2O3 powders and films, but their magnetic behaviors are very different. The ferromagnetism of the vacuum-annealed powders is partially due to precipitated Fe3O4 impurity. By contrast, the ferromagnetism of the films is intrinsic and does not originate from any magnetic impurity, as confirmed by the extensive x-ray absorption spectroscopy and magnetization studies.
Received: 01 December 2012      Published: 28 April 2013
PACS:  75.50.Pp (Magnetic semiconductors)  
  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
  75.30.Hx (Magnetic impurity interactions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/4/047501       OR      https://cpl.iphy.ac.cn/Y2013/V30/I4/047501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JIANG Feng-Xian
XI Shi-Bo
MA Rong-Rong
QIN Xiu-Fang
FAN Xiao-Chen
ZHANG Min-Gang
ZHOU Jun-Qi
XU Xiao-Hong
[1] Wolf S A et al 2001 Science 294 1488
[2] Xing P F et al 2009 Chin. Phys. Lett. 26 117503
[3] Zhang J M et al 2011 Chin. Phys. B 20 027103
[4] He L et al 2011 Acta Phys. Sin. 60 077505 (in Chinese)
[5] Chiba D, Takamura K, Matsukura F and Ohno H 2003 Appl. Phys. Lett. 82 3020
[6] Chen L et al 2011 Nano Lett. 11 2584
[7] Dietl T et al 2000 Science 287 1019
[8] Pan F et al 2008 Mater. Sci. Eng. R 62 1
[9] Matsumoto Y et al 2001 Science 291 854
[10] Yoo Y K et al 2005 Appl. Phys. Lett. 86 042506
[11] Jiang F X et al 2009 Appl. Surf. Sci. 255 3655
[12] Jayakumar O D et al 2007 Appl. Phys. Lett. 91 052504
[13] Li X et al 2008 Scr. Mater. 58 171
[14] Pearton S J et al 2003 J. Appl. Phys. 93 1
[15] Philip J et al 2006 Nat. Mater. 5 298
[16] Peleckis G, Wang X L and Dou S X 2006 Appl. Phys. Lett. 89 022501
[17] Hakimi A M H R et al 2011 Phys. Rev. B 84 085201
[18] He J et al 2005 Appl. Phys. Lett. 86 052503
[19] Yan S M et al 2009 Scr. Mater. 61 387
[20] Xu X H et al 2009 Appl. Phys. Lett. 94 212510
[21] Peleckis G, Wang X L and Dou S X 2006 IEEE Trans. Magn. 42 2703
[22] Li S C et al 2009 Appl. Phys. Lett. 95 022101
[23] Zhao B C et al 2008 Appl. Phys. Lett. 93 222506
[24] Jiang F X et al 2010 Appl. Phys. Lett. 96 052503
[25] Xu X H et al 2006 New J. Phys. 8 135
[26] Lu Z L, Hsu H S, Tzeng Y and Huang J C A 2009 Appl. Phys. Lett. 94 152507
[27] Yang X L et al 2009 J. Appl. Phys. 105 053910
[28] Wang X F et al 2007 Appl. Phys. Lett. 90 212502
[29] Yang J B et al 2004 J. Appl. Phys. 95 7540
[30] Okada K et al 2007 Jpn. J. Appl. Phys. 46 L823
[31] Gao D et al 2010 J. Phys. Chem. C 114 13477
[32] Jiang F X et al 2011 J. Appl. Phys. 109 053907
Related articles from Frontiers Journals
[1] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 047501
[2] Yu Guo , Nanshu Liu , Yanyan Zhao , Xue Jiang , Si Zhou, and Jijun Zhao . Enhanced Ferromagnetism of CrI$_{3}$ Bilayer by Self-Intercalation[J]. Chin. Phys. Lett., 2020, 37(10): 047501
[3] Qixun Guo, Yu Wu, Longxiang Xu, Yan Gong, Yunbo Ou, Yang Liu, Leilei Li, Yu Yan, Gang Han, Dongwei Wang, Lihua Wang, Shibing Long, Bowei Zhang, Xun Cao, Shanwu Yang, Xuemin Wang, Yizhong Huang, Tao Liu, Guanghua Yu, Ke He, Jiao Teng. Electrically Tunable Wafer-Sized Three-Dimensional Topological Insulator Thin Films Grown by Magnetron Sputtering[J]. Chin. Phys. Lett., 2020, 37(5): 047501
[4] Weiyi Gong, Ching-Him Leung, Chuen-Keung Sin, Jingzhao Zhang, Xiaodong Zhang, Bin Xi, Junyi Zhu. Stable Intrinsic Long Range Antiferromagnetic Coupling in Dilutely V Doped Chalcopyrite[J]. Chin. Phys. Lett., 2020, 37(2): 047501
[5] Baoyue Li, Yifeng Cao, Lin Xu, Guang Yang, Zhi Ma, Miao Ye, Tianxing Ma. Anisotropy Engineering Edge Magnetism in Zigzag Honeycomb Nanoribbons[J]. Chin. Phys. Lett., 2019, 36(6): 047501
[6] Chunkai Chan, Xiaodong Zhang, Yiou Zhang, Kinfai Tse, Bei Deng, Jingzhao Zhang, Junyi Zhu. Stepping Stone Mechanism: Carrier-Free Long-Range Magnetism Mediated by Magnetized Cation States in Quintuple Layer[J]. Chin. Phys. Lett., 2018, 35(1): 047501
[7] Fei Sun, Cong Xu, Shuang Yu, Bi-Juan Chen, Guo-Qiang Zhao, Zheng Deng, Wen-Ge Yang, Chang-Qing Jin. Synchrotron X-Ray Diffraction Studies on the New Generation Ferromagnetic Semiconductor Li(Zn,Mn)As under High Pressure[J]. Chin. Phys. Lett., 2017, 34(6): 047501
[8] Chao-Jing Lin, You-Guo Shi, Yong-Qing Li. Analytical Descriptions of Magnetic Properties and Magnetoresistance in n-Type HgCr$_2$Se$_4$[J]. Chin. Phys. Lett., 2016, 33(07): 047501
[9] LI Hang, ZHANG Xin-Hui. Evaluation of the Ultrafast Thermal Manipulation of Magnetization Precession in Ferromagnetic Semiconductor (Ga,Mn)As[J]. Chin. Phys. Lett., 2015, 32(06): 047501
[10] PAN Dong, WANG Si-Liang, WANG Hai-Long, YU Xue-Zhe, WANG Xiao-Lei, ZHAO Jian-Hua. Structure and Magnetic Properties of (In,Mn)As Based Core-Shell Nanowires Grown on Si(111) by Molecular-Beam Epitaxy[J]. Chin. Phys. Lett., 2014, 31(07): 047501
[11] XIA Yu-Qian, SUN Lei, XU Hao, HAN Jing-Wen, ZHANG Yi-Bo, WANG Yi, ZHANG Sheng-Dong. Magnetic Properties of Co-Doped TiO2 Films Grown on TiN Buffered Silicon Substrates[J]. Chin. Phys. Lett., 2014, 31(2): 047501
[12] Hassen Dakhlaoui. Quantum Size and Doping Concentration Effects on the Current-Voltage Characteristics in GaN Resonant Tunneling Diodes[J]. Chin. Phys. Lett., 2013, 30(7): 047501
[13] SUN Shao-Hua, WU Ping, XING Peng-Fei . Room-Temperature d0 Ferromagnetism in Nitrogen-Doped In2O3 Films[J]. Chin. Phys. Lett., 2013, 30(7): 047501
[14] CHEN Zhi-Yuan, CHEN Zhi-Quan, PAN Rui-Kun, WANG Shao-Jie. Vacancy-Induced Ferromagnetism in SnO2 Nanocrystals: A Positron Annihilation Study[J]. Chin. Phys. Lett., 2013, 30(2): 047501
[15] XI Shi-Bo, CUI Ming-Qi, QIN Xiu-Fang, XU Xiao-Hong, XU Wei, ZHENG Lei, ZHOU Jing, LIU Li-Juan, YANG Dong-Liang, GUO Zhi-Ying. Origin of Ferromagnetism in Zn1?xCoxO Thin Films: Evidences Provided by Hard and Soft X-Ray Absorption Spectroscopy[J]. Chin. Phys. Lett., 2012, 29(12): 047501
Viewed
Full text


Abstract