Chin. Phys. Lett.  2013, Vol. 30 Issue (1): 014209    DOI: 10.1088/0256-307X/30/1/014209
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Stop Band Gap in Periodic Layers of Confined Atomic Vapor/Dielectric Medium
LI Yuan-Yuan1**, LI Li1, LU Yi-Xin1, ZHANG Yan-Peng1,3, XU Ke-Wei1,2**
1Institute of Applied Physics, Xi'an University of Arts and Science, Xi'an 710065
2Nano-film and Biological Materials Research Center, Xi'an Jiaotong University, Xi'an 710049
3Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi'an Jiaotong University, Xi'an 710049
Cite this article:   
LI Yuan-Yuan, LI Li, LU Yi-Xin et al  2013 Chin. Phys. Lett. 30 014209
Download: PDF(531KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A stop band gap is predicted in periodic layers of a confined atomic vapor/dielectric medium. Reflection and transmission profile of the layers over the band gap can be dramatically modified by the confined atoms and the number of layer periods. These gap and line features can be ascribed to the enhanced contribution of slow atoms induced by atom-wall collision, transient behavior of atom-light interaction and Fabry–Pérot effects in a thermal confined atomic system.
Received: 17 September 2012      Published: 04 March 2013
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
  42.65.-k (Nonlinear optics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/1/014209       OR      https://cpl.iphy.ac.cn/Y2013/V30/I1/014209
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Yuan-Yuan
LI Li
LU Yi-Xin
ZHANG Yan-Peng
XU Ke-Wei
[1] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[2] John S 1987 Phys. Rev. Lett. 58 2486
[3] Sakoda K 2001 Optical Properties of Photonic Crystals (Berlin: Springer)
[4] Fan S et al 1998 Phys. Rev. Lett. 80 960
[5] Mekis A et al 1996 Phys. Rev. Lett. 77 3787
[6] Brown W et al 2005 Opt. Lett. 30 699
[7] Wu J et al 2009 Phys. Rev. Lett. 103 133601
[8] Bykov V P et al 1972 Sov. Phys. JETP 35 269
[9] Bajcsy M et al 2003 Nature 426 638
[10] Cristiani M et al 2002 Phys. Rev. A 65 063612
[11] André A et al 2002 Phys. Rev. Lett. 89 143602
[12] Artoni M et al 2005 Phys. Rev. E 72 046604
[13] Gao J et al 2010 Opt. Lett. 35 709
[14] Briaudeau S et al 1996 Europhys. Lett. 35 337
[15] Sarkisyan D et al 2001 Opt. Commun. 200 201
[16] Sargsyan D et al 2006 Phys. Rev. A 73 033803
[17] Keaveney J et al 2012 Phys. Rev. Lett. 108 173601
[18] Ai B et al 1994 Phys. Rev. A 50 3345
[19] Li Y et al 2008 Chin. Phys. Lett. 25 3238
[20] Li Y et al 2010 J. Mod. Opt. 57 885
[21] Li Y et al 2010 Chin. Phys. B 19 090702
[22] Li Y et al 2010 Chin. Phys. Lett. 27 044203
[23] Born M et al 1980 Principles of Optics 6th edn (Cambridge: Cambridge University)
Related articles from Frontiers Journals
[1] Shaoxing Liu, Xuanying Lai, Ce Yang, and J. F. Chen. Towards High-Dimensional Entanglement in Path: Photon-Source Produced from a Two-Dimensional Atomic Cloud[J]. Chin. Phys. Lett., 2021, 38(8): 014209
[2] Tianyu Li, Yong-Sheng Zhang, and Wei Yi. Two-Dimensional Quantum Walk with Non-Hermitian Skin Effects[J]. Chin. Phys. Lett., 2021, 38(3): 014209
[3] Kang-Bo Tan, Hong-Min Lu, Qiao Guan, Guang-Shuo Zhang, Chong-Chong Chen. Variational Analysis of High-Frequency Effect on Moving Electromagnetic Interface[J]. Chin. Phys. Lett., 2018, 35(7): 014209
[4] Jin-Song Huang, Jia-Hao Zhang, Yan Wang, Zhong-Hui Xu. Designing Fano-Like Quantum Routing via Atomic Dipole-Dipole Interactions[J]. Chin. Phys. Lett., 2018, 35(3): 014209
[5] Yin-Xing Ding, Lu-Lu Wang, Li Yu. Babinet-Inverted Optical Nanoantenna Analogue of Electromagnetically Induced Transparency[J]. Chin. Phys. Lett., 2018, 35(1): 014209
[6] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. Erratum: An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon [Chin. Phys. Lett. 33(2016)040601][J]. Chin. Phys. Lett., 2017, 34(10): 014209
[7] Li Wang, Yi-Hong Qi, Li Deng , Yue-Ping Niu, Shang-Qing Gong, Hong-Ju Guo. Effect of Phase Modulation on Electromagnetically Induced Grating in a Five-Level M-Type Atomic System[J]. Chin. Phys. Lett., 2017, 34(7): 014209
[8] Hong-Wei Guo, Shun-Cai Zhao, Xiao-Jing Wei, Xin Li. Negative Refraction Index Manipulated by a Displaced Squeezed Fock State in the Mesoscopic Dissipative Left-Handed Transmission Line[J]. Chin. Phys. Lett., 2017, 34(3): 014209
[9] Yue-Chun Jiao, Xiao-Xuan Han, Zhi-Wei Yang, Jian-Ming Zhao, Suo-Tang Jia. Electromagnetically Induced Transparency in a Cold Gas with Strong Atomic Interactions[J]. Chin. Phys. Lett., 2016, 33(12): 014209
[10] Li-Yun Zhang, Hua-Jie Hu, Xin Yang, Ming-Tao Cao, Dong Wei, Pei Zhang, Hong Gao, Fu-Li Li. The Image Property in an EIT Information Transfer System[J]. Chin. Phys. Lett., 2016, 33(12): 014209
[11] Yan-Li Xue, Ke Zhang, Bao-Hua Feng, Zhi-Yuan Li. Inhibition of Atomic Decay in Strongly Coupled Photonic Crystal Cavities[J]. Chin. Phys. Lett., 2016, 33(07): 014209
[12] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon[J]. Chin. Phys. Lett., 2016, 33(04): 014209
[13] R. Nasehi, S. H. Asadpour, H. Rahimpour Soleimani, M. Mahmoudi. Controlling the Goos–Hänchen Shift via Incoherent Pumping Field and Electron Tunneling in the Triple Coupled InGaAs/GaAs Quantum Dots[J]. Chin. Phys. Lett., 2016, 33(01): 014209
[14] WANG Chun-Fang, WANG Feng, YANG Li-Ru. Electromagnetically Induced Self-Imaging in Four-Level Doppler Broadening Medium[J]. Chin. Phys. Lett., 2015, 32(09): 014209
[15] YANG Li-Ru, WANG Chun-Fang, ZHANG Da-Wei. Transverse Optical Properties of the Eu3+:Y2SiO5 Crystal in Electromagnetically Induced Transparency[J]. Chin. Phys. Lett., 2015, 32(06): 014209
Viewed
Full text


Abstract