Chin. Phys. Lett.  2013, Vol. 30 Issue (1): 014201    DOI: 10.1088/0256-307X/30/1/014201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Birefringence Optical Feedback with a Folded Cavity in HeNe Laser
WU Yun, TAN Yi-Dong**
The State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084
Cite this article:   
WU Yun, TAN Yi-Dong 2013 Chin. Phys. Lett. 30 014201
Download: PDF(917KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The birefringence optical feedback with a folded cavity in HeNe laser is investigated. A theory model based on the equivalent cavity of the Fabry–Perot interferometer is presented. The phase difference between the two intensities in birefringence feedback is twice the retardation of the wave plate. The phase difference is invariable when the length of the feedback cavity changes. With the adoption of a cube corner prism (CCP) to form a folded cavity, the fringe frequency is doubled, and the resolution of the displacement sensor based on birefringence optical feedback with a folded cavity is improved. A resistance chain of 5-fold subdivision and 4-fold logic subdivision is used as further subdivision. The resolution of λ/80 is obtained eventually; for 632.8 nm HeNe laser it is 7.91 nm. The displacement sensor based on birefringence optical feedback with a folded cavity is simple and of high resolution, large measurement range, low cost, and is of great application potential in industry.
Received: 04 September 2012      Published: 04 March 2013
PACS:  42.25.Lc (Birefringence)  
  42.55.Lt (Gas lasers including excimer and metal-vapor lasers)  
  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/1/014201       OR      https://cpl.iphy.ac.cn/Y2013/V30/I1/014201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Yun
TAN Yi-Dong
[1] King P G R and Steward G J 1963 New Sci. 17 180
[2] Alvarado T, Julius J and Caesar S 2005 Appl. Opt. 44 7287
[3] Groot P J and Gallatin G M 1989 Opt. Lett. 14 165
[4] Bearden A, O'Neill M, Osborne L and Wong T 1993 Opt. Lett. 18 238
[5] Otsuka K, Abe K, Ko J Y and Lim T S 2002 Opt. Lett. 27 1339
[6] Mao W, Zhang S, Zhang L 2006 Acta Phys. Sin. 55 4704 (in Chinese)
[7] Ding Y C, Zhang S, Li Y, Zhu J et al 2003 Opt. Eng. 42 2225
[8] Mao W, Zhang S, Zhang L et al 2006 Chin. Phys. Lett. 23 1188
[9] Liu G, Zhang S, Li Y et al 2005 Chin. Phys. B 14 1984
[10] Li L, Zhang S, Li S et al 2001 Opt. Commun. 200 303
[11] Liu G, Zhang S, Li Y et al 2004 Chin. Phys. 13 855
[12] Fei L and Zhang S 2004 Opt. Express 12 6100
[13] Tan Y, Zhang S, Liu W and Mao W 2007 Chin. Phys. 16 1020
[14] Wang W, Grattan K, Palmer A and Boyle W 1994 IEEE J. Lightwave Technol. 12 1577
Related articles from Frontiers Journals
[1] Hai-Sha Niu, Lian-Qing Zhu, Jian-Jun Song. Laser Intensity Variation in Amplitude and Phase Induced by Elliptically Polarized Feedback[J]. Chin. Phys. Lett., 2018, 35(5): 014201
[2] Quan-Zhou Zhao, De-Long Zhang. Transmission Spectral Characteristics of Photonic Crystals Milled in Annealed Proton-Exchange LiNbO$_3$ Waveguide[J]. Chin. Phys. Lett., 2017, 34(3): 014201
[3] WU Yun, TAN Yi-Dong, ZHANG Shu-Lian, LI Yan. Influence of Feedback Level on Laser Polarization in Polarized Optical Feedback[J]. Chin. Phys. Lett., 2013, 30(8): 014201
[4] ZHAO Shuang, WU Chong-Qing, WANG Yong-Jun. Polarization Dependence of Linewidth Enhancement Factor in Semiconductor Optical Amplifier and Its Implication for Nonlinear Polarization Rotation[J]. Chin. Phys. Lett., 2009, 26(10): 014201
[5] REN Wen-Yi, ZHANG Chun-Min, MU Ting-Kui. Application of Equivalent Air Gap Method in Uniaxial Crystal Plate[J]. Chin. Phys. Lett., 2009, 26(8): 014201
[6] LIN Yan-Ting, REN Bo, ZHAO Xiang-Yong, WANG Fei-Fei, WANG Yao-Jin, XU Hai-Qing, LIN Di, LUO Hao-Su. Optical Dispersion Behavior and Band Gap Energy of Relaxor Ferroelectric 0.92Pb(Mg1/3Nb2/3)O3-0.08PbTiO3 Single Crystal[J]. Chin. Phys. Lett., 2009, 26(7): 014201
[7] REN Cheng, TAN Yi-Dong, ZHANG Shu-Lian. Generation and Modulation of Phase Difference of Output Intensities in a Feedback Nd:YAG Laser with an Extracavity Waveplate Rotated[J]. Chin. Phys. Lett., 2009, 26(3): 014201
[8] LI Zheng-Yong, WU Chong-Qing, SHUM Ping, DONG Hui. Matrix-Based Polarization Analysis and Application of Semiconductor Optical Amplifiers[J]. Chin. Phys. Lett., 2008, 25(11): 014201
[9] RAO Lian-Zhou, WANG Zong-Chi, ZHENG Xiao-Xia. Tightly Focusing of Circularly Polarized Vortex Beams through a Uniaxial Birefringent Crystal[J]. Chin. Phys. Lett., 2008, 25(9): 014201
[10] PAN Xu, WANG Chang-Shun, ZHANG Xiao-Qiang. Inverse Relaxation of Photoinduced Birefringence in a Liquid-Crystalline Azobenzene Side-Chain Polymer[J]. Chin. Phys. Lett., 2008, 25(9): 014201
[11] ZHAO Shuang, WU Fu-Quan, ZHANG Dong-Sheng, ZHAO Xin, WANG Jin-Xi, XUE Mei, ZHONG Wei-Gang. Temperature Influence on Divergence Angles of Quartz Crystal Wollaston Prism[J]. Chin. Phys. Lett., 2008, 25(7): 014201
[12] WEI Lai, TENG Xue-Lei, LU Ming, ZHAO You-Yuan, MA De-Wang, DING Jian-Dong. Photoinduced Birefringence and Broadband All-Optical Photonic Switch in a Bacteriorhodopsin/Polymer Composite Film[J]. Chin. Phys. Lett., 2007, 24(12): 014201
[13] YU Xiao-Tong, WEI Ze-Yong, LI Hong-Qiang, ZHANG Ye-Wen, CHEN Hong. Negative Refraction in One-Dimensional Photonic Crystals with Tilted Interface[J]. Chin. Phys. Lett., 2007, 24(12): 014201
[14] ZHOU Lu-Fei, ZHANG Shu-Lian, GUO Hong, REN Zhou. Precision Controlling of Frequency Difference for Elastic-Stress Birefringence He--Ne Dual-Frequency Lasers[J]. Chin. Phys. Lett., 2007, 24(11): 014201
[15] Jing QIN, Norihiro UMEDA. Near-Field Birefringence Response of Liquid Crystal Molecules in Thickness Direction of Liquid Crystal Thin Film Orientated by Shear Force[J]. Chin. Phys. Lett., 2007, 24(10): 014201
Viewed
Full text


Abstract