FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Further Notes on the Gaussian Beam Expansion |
DAI Yu-Rong1, DING De-Sheng2,3** |
1Department of Physics, Southeast University, Nanjing 210096
2School of Electronic Science and Engineering, Southeast University, Nanjing 210096
3Laboratory of Modern Acoustics of MOE, Nanjing University, Nanjing 210093 |
|
Cite this article: |
DING De-Sheng, DAI Yu-Rong 2012 Chin. Phys. Lett. 29 024301 |
|
|
Abstract We provide alternatively a simple way of computing the Fresnel field integral, a further extension to the Gaussian-beam expansion. With a known result that the circ function is approximately decomposed into a sum of Gaussian functions, the zero-order Bessel function of the first kind is similarly expanded by the Bessel–Fourior transform. Two expansions are together inserted in this integral, which is then expressible in terms of the simple algebraic functions. The approach is useful in treatment of the field radiation problem for a large and important group of piston sources in acoustics. As examples, the calculation results for the uniform and the simply supported piston sources are presented, in a good agreement with those evaluated by numerical integration.
|
Keywords:
43.20.Rz
43.20.Bi
43.20.E1
|
|
Received: 21 October 2011
Published: 11 March 2012
|
|
PACS: |
43.20.Rz
|
(Steady-state radiation from sources, impedance, radiation patterns, boundary element methods)
|
|
43.20.Bi
|
(Mathematical theory of wave propagation)
|
|
43.20.E1
|
|
|
|
|
|
[1] Cook B D and Arnoult III W J 1976 J. Acoust. Soc. Am. 59 9
[2] Cavanagh E and Cook B D 1980 J. Acoust. Soc. Am. 67 1136
[3] Wen J J and Breazeale M A 1988 J. Acoust. Soc. Am. 83 1752
[4] Thompson R B et al 1987 J. Acoust. Soc. Am. 82 1818
[5] Ding D S et al 1993 Acta Acust. 18 249
[6] Ding D S and Lu Z H 1996 Chin. J. Acoust. 15 213
[7] Ding D S and Liu X J 1999 J. Opt. Soc. Am. A 16 1286
[8] Prange M D and Shenoy R G 1996 Ultrasonics 34 117
[9] Spies M 1999 J. Acoust. Soc. Am. 105 633
[10] Huang D and Breazeale M A 1999 J. Acoust. Soc. Am. 106 1771
[11] Zhang Y et al 2002 Chin. Phys. Lett. 19 1825
[12] Ding D et al 2003 J. Acoust. Soc. Am. 113 3043
[13] Ding D and Zhang Y 2004 J. Acoust. Soc. Am. 116 1401
[14] Ding D S et al 2002 Chin. Phys. Lett. 19 689
[15] Ding D et al 1996 J. Acoust. Soc. Am. 100 727
[16] Ding D S and Lu Z H 1996 Nonlinear Acoustics in Perspective: Proceedings of the 14th International Symposium on Nonlinear Acoustics ed Wei R J (Nanjing: Nanjing University Press) p 183
[17] Matar O B et al 1998 Ultrasonics 36 391
[18] Ding D S 2000 J. Acoust. Soc. Am. 108 2759
[19] Ding D S and Zhang Y 2004 Chin. Phys. Lett. 21 503
[20] Ding D S 2004 J. Acoust. Soc. Am. 115 35
[21] Drege E M et al 2000 Appl. Opt. 39 4918
[22] Cheng Y and Liu X J 2009 Chin. Phys. Lett. 26 014301
[23] Liang B et al 2009 Chin. Phys. Lett. 26 024301
[24] Kim H J et al 2006 J. Acoust. Soc. Am. 119 1971
[25] Ding D S and Xu J Y 2006 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53 246
[26] Ding D S et al 2005 J. Acoust. Soc. Am. 118 608
[27] Dai Y R and Ding D S 2011 Acta. Phys. Sin. 60 124302
[28] Ding D S et al 2008 Progress of Acoustics in China eds Cheng J C and Tian J (Bejing: Science Press) p 55
[29] Dekker D L et al 1974 J. Acoust. Soc. Am. 56 87
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|