Chin. Phys. Lett.  2012, Vol. 29 Issue (2): 024205    DOI: 10.1088/0256-307X/29/2/024205
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Realization of a Two-Dimensional Magneto-optical Trap with a High Optical Depth
LIU Yang, WU Jing-Hui, SHI Bao-Sen**, GUO Guang-Can
Key Laboratory of Quantum Information of Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026
Cite this article:   
LIU Yang, WU Jing-Hui, SHI Bao-Sen et al  2012 Chin. Phys. Lett. 29 024205
Download: PDF(649KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We build up a novel setup of a two-dimensional (2D) 85Rb magneto−optical trap (MOT) with a high optical depth (OD) of 38. Such a MOT trap of 85Rb has several advantages as compared to the normal three−dimensional ellipsoidal MOT. Firstly, it will greatly enhance atom-photon interaction due to the large OD. Then, the dephasing caused by the magnetic gradient will be decreased in the long axis of the 2D MOT, which we want to avoid from in the experiments. The metastable ground level dephasing rate was γ21=0.008γ31, which is much less than that in a normal MOT. The total number of atoms in this MOT was measured to be 9.1×108.

Keywords: 42.50.-p      32.80.Qk      32.10.-f     
Received: 02 November 2011      Published: 11 March 2012
PACS:  42.50.-p (Quantum optics)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
  32.10.-f (Properties of atoms)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/2/024205       OR      https://cpl.iphy.ac.cn/Y2012/V29/I2/024205
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Yang
WU Jing-Hui
SHI Bao-Sen
GUO Guang-Can
[1] Raab E L, Prentiss M, Cable A, Chu S and Pritchard D E 1987 Phys. Rev. Lett. 59 2631

[2] Metcalf H J and van der Straten P 1999 Laser Cooling and Trapping (New York: Springer)

[3] Monroe C, Swann W, Robinson H and Wieman C 1990 Phys. Rev. Lett. 65 1571

[4] Boyd M B, Ludlow A D, Blatt S, Foreman S M, Ido T, Zelevinsky T and Ye J 2007 Phys. Rev. Lett. 98 083002

[5] Santos F P D, Marion H, Bize S, Sortais Y, Clairon A and Salomon C 2002 Phys. Rev. Lett. 89 233004

[6] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198

[7] Davis K B, Mewes M -O, Andrews M R, Druten N J V, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969

[8] Xiong D Z, Chen H X, Wang P J, Yu X D, Gao F and Zhang J 2008 Chin. Phys. Lett. 25 843

[9] Qu Q Z, Zhou S Y, Long Q, Xu Z, Liu L and Wang Y Z 2007 Chin. Phys. Lett. 24 3396

[10] Chanelière T, Matsukevich D N, Jenkins S D, Lan S Y, Kennedy T A B and Kuzmich A 2005 Nature 438 833

[11] Dieckmann K, Spreeuw R J C, Weidemuller M and Walraven J T M 1998 Phys. Rev. A 58 3891

[12] Wei R and Wang Y Z 2004 Chin. J. Lasers 31 1188

[13] Chen Y C, Liao Y A, Hsu L and Yu I A 2001 Phys. Rev. A 64 031401

[14] Cho H W, He Y C, Peters T, Chen Y H, Chen H C, Lin S C, Lee Y C and Yu I A 2007 Opt. Express 15 12114

[15] Lin Y W, Chou H C, Dwivedi P P, Chen Y C and Yu I A 2008 Opt. Express 16 3753

[16] Lu X S, Chen Q F, Shi B S and Guo G C 2009 Chin. Phys. Lett. 26 064204

[17] Lu X S, Chen Q F, Shi B S and Guo G C 2009 Chin. Opt. Lett. 7 1048
Related articles from Frontiers Journals
[1] LIU Kui, CUI Shu-Zhen, YANG Rong-Guo, ZHANG Jun-Xiang, GAO Jiang-Rui. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier[J]. Chin. Phys. Lett., 2012, 29(6): 024205
[2] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 024205
[3] Muhammad Haneef*,Saleh Mohammad,Suneela Arif,Jehan Akbar,Nasrullah Shah,Imran Ullah. Photodetachment of Di-atomic Negative Ion H2 near a Surface[J]. Chin. Phys. Lett., 2012, 29(5): 024205
[4] HU Xin, LIU Gang-Qin, XU Zhang-Cheng, PAN Xin-Yu. Influence of Microwave Detuning on Ramsey Fringes of a Single Nitrogen Vacancy Center Spin in Diamond[J]. Chin. Phys. Lett., 2012, 29(2): 024205
[5] JIA Guang-Rui, **, ZHANG Xian-Zhou, LIU Yu-Fang, YU Kun, ZHAO Yue-Jin . Calculation of Multiphoton Transition in Li Atoms via Chirped Microwave Pulse[J]. Chin. Phys. Lett., 2011, 28(10): 024205
[6] WANG Ji-Suo, **, MENG Xiang-Guo, FAN Hong-Yi . A Family of Generalized Wigner Operators and Their Physical Meaning as Bivariate Normal Distribution[J]. Chin. Phys. Lett., 2011, 28(10): 024205
[7] CHEN Zhi-Hua**, LIN Xiu-Min . Generating Entangled States of Multilevel Atoms through a Selective Atom-Field Interaction[J]. Chin. Phys. Lett., 2011, 28(1): 024205
[8] MA Shan-Jun, XU Xue-Xiang. A New Approach for Constructing New Coherent-Entangled State Representations[J]. Chin. Phys. Lett., 2010, 27(9): 024205
[9] ZHANG Xue-Hua, HU Xiang-Ming, KONG Ling-Feng, ZHANG Xiu. High-Frequency Einstein-Podolsky-Rosen Entanglement via Atomic Memory Effects in Four-Wave Mixing[J]. Chin. Phys. Lett., 2010, 27(9): 024205
[10] XIE Xiao-Peng, ZHUANG Wei, CHEN Jing-Biao. Adiabatic Passage Based on the Calcium Active Optical Clock[J]. Chin. Phys. Lett., 2010, 27(7): 024205
[11] XUE Peng. A Controlled Phase Gate with Nitrogen-Vacancy Centers in Nanocrystal Coupled to a Silica Microsphere Cavity[J]. Chin. Phys. Lett., 2010, 27(6): 024205
[12] LI Yuan-Yuan, , LI-Li, BAI Jin-Tao, LI Chang-Biao, ZHANG Yan-Peng, HOU Xun,. Dressed Four-Wave Mixing Spectroscopy Modified by Polarization Interference and Atom-Wall Collision in Micrometric Thin Cells[J]. Chin. Phys. Lett., 2010, 27(4): 024205
[13] ZHU Yu-Zhu, HU Xiang-Ming, WANG Fei, LI Jing-Yan. Enhancement of Continuous Variable Entanglement in Four-Wave Mixing due to Atomic Memory Effects[J]. Chin. Phys. Lett., 2010, 27(4): 024205
[14] GUO Yu, DENG Hong-Liang. Preparation of Cluster States of Atomic Qubits in Cavity QED[J]. Chin. Phys. Lett., 2010, 27(4): 024205
[15] GENG Zhen-Duo, JIA Ning, ZHAO Xu, XIA Tian-Yu, JING Hui. Adiabatic Fidelity of Coherent Atom-Heteronuclear Molecule Conversion[J]. Chin. Phys. Lett., 2010, 27(3): 024205
Viewed
Full text


Abstract