Chin. Phys. Lett.  2011, Vol. 28 Issue (10): 109401    DOI: 10.1088/0256-307X/28/10/109401
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
The Wave-Like Auroral Structure around Auroral Expansion Onset
TANG Chao-Ling**
School of Space Science and Physics, Shandong University at Weihai, Weihai 264209
Cite this article:   
TANG Chao-Ling 2011 Chin. Phys. Lett. 28 109401
Download: PDF(1945KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present the direct connection between the wave-like auroral structure around the time of auroral expansion onset and the ballooning mode waves in the near-Earth magnetotail. Based on the NASA mission time history of events and macroscale interactions during substorms (THEMIS) ground-based all-sky imagers, we show that around the time of auroral expansion onset, a wave-like auroral structure first has four luminosity peaks separated by 2–3° magnetic longitude (MLON). Subsequently, the wave-like structure propagates in the azimuthal direction and an overall bright arc spans approximately 1 h magnetic local time. The wavelength is estimated to be 120–180 km. Finally, a noticeable poleward auroral expansion is observed. The ballooning mode waves are identified by two THEMIS probes in the near-Earth magnetotail. The observed wavelength of the ballooning mode waves is approximately equal to the order of the ion Larmor radius. The wavelength of 1500–3000 km in the near-Earth magnetotail is comparable with the wave-like auroral structure estimate. This study suggests that the ballooning mode waves might play a crucial role in auroral expansion onset, corresponding to the wave-like auroral structure in this study.
Keywords: 94.30.cq      94.30.Lr     
Received: 12 April 2011      Published: 28 September 2011
PACS:  94.30.cq (MHD waves, plasma waves, and instabilities)  
  94.30.Lr (Magnetic storms, substorms)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/10/109401       OR      https://cpl.iphy.ac.cn/Y2011/V28/I10/109401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TANG Chao-Ling
[1] Cheng C Z 2004 Space Sci. Rev. 113 207
[2] Roux A et al 1991 J. Geophys. Res. 96 (A10) 17697
[3] Bhattacharjee A, Ma Z W and Wang X 1998 Geophys. Res. Lett. 25 861
[4] Pu Z Y et al 1997 J. Geophys. Res. 102 (A7) 14397
[5] Saito M H et al 2008 Geophys. Res. Lett. 35 L07103
[6] Donovan E et al 2008 Geophys. Res. Lett. 35 L17S18
[7] Liang J et al 2008 Geophys. Res. Lett. 35 L17S19
[8] Rae I J et al 2009 J. Geophys. Res. 114 A07220
[9] Uritsky V M et al 2009 Geophys. Res. Lett. 36 L21103
[10] Kepko L et al 2009 Geophys. Res. Lett. 36 L24104
[11] Elphinstone R D et al 1995 J. Geophys. Res. 100 (A5) 7937
[12] Henderson M G 2009 Ann. Geophys. 27 2129
[13] Voronkov I O et al 2003 J. Geophys. Res. 108 1073
[14] Chen L and Hasegawa A 1991 J. Geophys. Res. 96 (A2) 1503
[15] Tsyganenko N A 2002 J. Geophys. Res. 107 (A8) 1176
[16] Ohtani S et al 1992 J. Geophys. Res. 97 19311
[17] Petrukovich A A et al 2006 Ann. Geophys. 24 1695
Related articles from Frontiers Journals
[1] CHENG Zheng-Wei**, SHI Jian-Kui, ZHANG Tie-Long, WANG Sheng-Guo, LIU Zhen-Xing . Field-Aligned Currents at the PSBL on 17 August 2001 Storm: Relationships with solar Wind Conditions[J]. Chin. Phys. Lett., 2011, 28(9): 109401
[2] ZHOU Qing-Hua, HE Yi-Hua, HE Zhao-Guo, YANG Chang. Propagation Characteristics of Whistler-Mode Chorus during Geomagnetic Activities[J]. Chin. Phys. Lett., 2010, 27(5): 109401
[3] WEI Xin-Hua, CAO Jin-Bin, ZHOU Guo-Cheng, FU Hui-Shan,. Is the Near-Earth Current Sheet Prior to Reconnection Unstable to Tearing Mode?[J]. Chin. Phys. Lett., 2010, 27(2): 109401
[4] XIAO Fu-Liang, TIAN Tian, CHEN Liang-Xu. Bounce-averaged Pitch-angle Diffusion by Electromagnetic Ion Cyclotron Waves in Multi-ion Plasmas[J]. Chin. Phys. Lett., 2009, 26(5): 109401
[5] LU Xing-Qiang, MA Zhi-Wei,. Dynamic Processes of Cross-Tail Current in the Near-Earth Magnetotail[J]. Chin. Phys. Lett., 2009, 26(5): 109401
[6] SU Zhen-Peng, ZHENG Hui-Nan, XIONG Ming. Dynamic Evolution of Outer Radiation Belt Electrons due to Whistler-Mode Chorus[J]. Chin. Phys. Lett., 2009, 26(3): 109401
[7] SU Zhen-Peng, ZHENG Hui-Nan. Resonant Scattering of Relativistic Outer Zone Electrons by Plasmaspheric Plume Electromagnetic Ion Cyclotron Waves[J]. Chin. Phys. Lett., 2009, 26(12): 109401
[8] FU Hui-Shan, CAO Jin-Bin, YANG Biao, Lucek E, Rème H, Dandouras I. ULF Waves Associated with Solar Wind Deceleration in the Earth's Foreshock[J]. Chin. Phys. Lett., 2009, 26(11): 109401
[9] HE Hui-Yong, CHEN Liang-Xu, LI Jiang-Fan. Characteristics of Wave--Particle Interaction in a Hydrogen Plasma[J]. Chin. Phys. Lett., 2008, 25(9): 109401
[10] ZHENG Hui-Nan, SU Zhen-Peng, XIONG Ming. Pitch Angle Distribution Evolution of Energetic Electrons by Whistler-Mode Chorus[J]. Chin. Phys. Lett., 2008, 25(9): 109401
[11] Identification of Radial Distance of Plasma Dispersionless Injection Boundary from the Injection Source. Identification of Radial Distance of Plasma Dispersionless Injection Boundary from the Injection Source[J]. Chin. Phys. Lett., 2008, 25(2): 109401
[12] SU Zhen-Peng, ZHENG Hui-Nan. Simulation of Resonant Interaction between Energetic Electrons and Whistler-Mode Chorus in the Outer Radiation Belt[J]. Chin. Phys. Lett., 2008, 25(12): 109401
[13] XIAO Fu-Liang, CHEN Lun-Jin, ZHENG Hui-Nan, WANG Shui, GUO Jun. A Three-Dimensional Ray-Tracing Study of R-X Mode Waves during High Geomagnetic Activity[J]. Chin. Phys. Lett., 2008, 25(1): 109401
[14] YUAN Zhi-Gang, DENG Xiao-Hua, PANG Ye, LI Shi-You, WANG Jing-Fang. Alfven Waves in a Plasma Sheet Boundary Layer Associated with Near-Tail Magnetic Reconnection[J]. Chin. Phys. Lett., 2007, 24(4): 109401
[15] XIAO Fu-Liang, CHEN Liang-Xu, ZHOU Qing-Hua, HE Hui-Yong, WEN Yong-Jun. Bounce-Averaged Acceleration of Energetic Electrons by Whistler Mode Chorus in the Magnetosphere[J]. Chin. Phys. Lett., 2007, 24(1): 109401
Viewed
Full text


Abstract