Chin. Phys. Lett.  2011, Vol. 28 Issue (9): 094702    DOI: 10.1088/0256-307X/28/9/094702
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Slip Effects on an Unsteady Boundary Layer Stagnation-Point Flow and Heat Transfer towards a Stretching Sheet
Krishnendu Bhattacharyya**, Swati Mukhopadhyay, G. C. Layek
Department of Mathematics, The University of Burdwan, Burdwan-713104, West Bengal, India
Cite this article:   
Krishnendu Bhattacharyya, Swati Mukhopadhyay, G. C. Layek 2011 Chin. Phys. Lett. 28 094702
Download: PDF(552KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An analysis is presented for an unsteady boundary layer stagnation-point flow of a Newtonian fluid and the heat transfer towards a stretching sheet taking non-conventional partial slip conditions at the sheet. The self-similar equations are obtained using similarity transformations and solved numerically by the shooting method. Effects of the parameters involved in the equations, especially velocity slip and thermal slip parameters on the velocity and temperature profiles, are analyzed extensively. It is revealed that due to the velocity and thermal slip parameters, the rate of heat transfer from the sheet and the wall skin friction change significantly.
Keywords: 47.15.Cb      47.45.Gx      44.20.+b      44.27.+g     
Received: 15 December 2010      Published: 30 August 2011
PACS:  47.15.Cb (Laminar boundary layers)  
  47.45.Gx (Slip flows and accommodation)  
  44.20.+b (Boundary layer heat flow)  
  44.27.+g (Forced convection)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/9/094702       OR      https://cpl.iphy.ac.cn/Y2011/V28/I9/094702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Krishnendu Bhattacharyya
Swati Mukhopadhyay
G. C. Layek
[1] Hiemenz K 1911 Dingler's Poly. J. 326 321
[2] Crane L J 1970 Z. Angew. Math. Phys. 21 645
[3] Chiam T C 1994 J. Phys. Soc. Jpn. 63 2443
[4] Mahapatra T R and Gupta A S 2001 Acta Mech. 152 191
[5] Mahapatra T R et al 2002 Heat Mass Transfer 38 517
[6] Mahapatra T R and Gupta A S 2004 Int. J. Non-Linear Mech. 39 811
[7] Nazar R et al 2004 Int. J. Non-Linear Mech. 39 1227
[8] Ishak A et al 2009 Physica A 388 3377
[9] Hayat T et al 2009 Nonlinear Anal. Real World Appl. 10 1514
[10] Zhu J, Zheng L and Zhang X 2010 World Academy of Science, Engineering and Technology 63 151
[11] Bhattacharyya K and Layek G C 2011 Int. J. Heat Mass Transfer 54 302
[12] Beavers G S and Joseph D D 1967 J. Fluid Mech. 30 197
[13] Andersson H I 2002 Acta Mech. 158 121
[14] Wang C Y 2002 Chem. Eng. Sci. 57 3745
[15] Ariel P D, Hayat T and Asghar S 2006 Acta Mech. 187 29
[16] Hayat T et al 2008 Int. J. Heat Mass Transfer 51 4528
[17] Zhu J et al 2010 Appl. Math. Mech. 31 439
[18] Bhattacharyya K et al 2011 Int. J. Heat Mass Transfer 54 308
[19] Surma Devi C D et al 1986 Int. J. Heat Mass Transfer 29 1996
[20] Smith S H 1994 ASME J. Appl. Mech. 61 629
[21] Takhar H S et al 1993 Arch. Appl. Mech. 63 313
[22] Pop I and Na T Y 1996 Mech. Res. Commun. 23 413
[23] Elbashbeshy E M A and Bazid M A A 2004 Heat Mass Transfer 41 1
[24] Tsai R et al 2008 Int. Commun. Heat Mass Transfer 35 1340
[25] Nazar R et al 2004 Int. J. Eng. Sci. 42 1241
[26] Ishak A et al 2008 Can. J. Phys. 86 853
[27] Mukhopadhyay S et al 2009 Heat Mass Transfer 45 1447
[28] Mukhopadhyay S 2010 Chin. Phys. Lett. 27 124401
[29] Zheng L, Wang L and Zhang X 2011 Commun. Nonlinear Sci. Numer. Simulat. 16 731
[30] Andersson H I et al 2000 Int. J. Heat Mass Transfer 43 69
[31] Bhattacharyya K et al 2011 Chin. Phys. Lett. 28 024701
Related articles from Frontiers Journals
[1] Swati Mukhopadhyay*. Heat Transfer Analysis of the Unsteady Flow of a Maxwell Fluid over a Stretching Surface in the Presence of a Heat Source/Sink[J]. Chin. Phys. Lett., 2012, 29(5): 094702
[2] M. Sajid, K. Mahmood, Z. Abbas. Axisymmetric Stagnation-Point Flow with a General Slip Boundary Condition over a Lubricated Surface[J]. Chin. Phys. Lett., 2012, 29(2): 094702
[3] Chandaneswar Midya*. Exact Solutions of Chemically Reactive Solute Distribution in MHD Boundary Layer Flow over a Shrinking Surface[J]. Chin. Phys. Lett., 2012, 29(1): 094702
[4] Krishnendu Bhattacharyya** . Dual Solutions in Unsteady Stagnation-Point Flow over a Shrinking Sheet[J]. Chin. Phys. Lett., 2011, 28(8): 094702
[5] Krishnendu Bhattacharyya**, G. C. Layek . MHD Boundary Layer Flow of Dilatant Fluid in a Divergent Channel with Suction or Blowing[J]. Chin. Phys. Lett., 2011, 28(8): 094702
[6] Krishnendu Bhattacharyya . Boundary Layer Flow and Heat Transfer over an Exponentially Shrinking Sheet[J]. Chin. Phys. Lett., 2011, 28(7): 094702
[7] TANG Zhan-Qi, JIANG Nan, ** . TR PIV Experimental Investigation on Bypass Transition Induced by a Cylinder Wake[J]. Chin. Phys. Lett., 2011, 28(5): 094702
[8] SI Xin-Hui**, ZHENG Lian-Cun, ZHANG Xin-Xin, SI Xin-Yi, YANG Jian-Hong . Flow of a Viscoelastic Fluid through a Porous Channel with Expanding or Contracting Walls[J]. Chin. Phys. Lett., 2011, 28(4): 094702
[9] Krishnendu Bhattacharyya**, Swati Mukhopadhyay, G. C. Layek . MHD Boundary Layer Slip Flow and Heat Transfer over a Flat Plate[J]. Chin. Phys. Lett., 2011, 28(2): 094702
[10] ZHANG Hui, FAN Bao-Chun**, CHEN Zhi-Hua . In-depth Study on Cylinder Wake Controlled by Lorentz Force[J]. Chin. Phys. Lett., 2011, 28(12): 094702
[11] Swati Mukhopadhyay . Heat Transfer in a Moving Fluid over a Moving Non-Isothermal Flat Surface[J]. Chin. Phys. Lett., 2011, 28(12): 094702
[12] FANG Tie-Gang*, ZHANG Ji, ZHONG Yong-Fang, TAO Hua . Unsteady Viscous Flow over an Expanding Stretching Cylinder[J]. Chin. Phys. Lett., 2011, 28(12): 094702
[13] Tiegang FANG**, Shanshan YAO . Viscous Swirling Flow over a Stretching Cylinder[J]. Chin. Phys. Lett., 2011, 28(11): 094702
[14] QU Chao, SONG Fu-Quan** . Flow Characteristics of Deionized Water in Microtubes Absorbing Fluoro-Alkyl Silanes[J]. Chin. Phys. Lett., 2011, 28(10): 094702
[15] M. Sajid, N. Ali, T. Javed, Z. Abbas. Stretching a Curved Surface in a Viscous Fluid[J]. Chin. Phys. Lett., 2010, 27(2): 094702
Viewed
Full text


Abstract