Chin. Phys. Lett.  2010, Vol. 27 Issue (12): 120303    DOI: 10.1088/0256-307X/27/12/120303
GENERAL |
The Time Division Multi-Channel Communication Model and the Correlative Protocol Based on Quantum Time Division Multi-Channel Communication
LIU Xiao-Hui1,2**, PEI Chang-Xing1, NIE Min2
1State Key Lab of Integrated Service Networks, Xidian University, Xi'an 710071
2School of Communication and Information Engineering, Xi'an Institute of Post and Telecommunication, Xi'an 710061
Cite this article:   
LIU Xiao-Hui, PEI Chang-Xing, NIE Min 2010 Chin. Phys. Lett. 27 120303
Download: PDF(498KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the classical time division multi-channel communication theory, we present a scheme of quantum time-division multi-channel communication (QTDMC). Moreover, the model of quantum time division switch (QTDS) and correlative protocol of QTDMC are proposed. The quantum bit error rate (QBER) is analyzed and the QBER simulation test is performed. The scheme shows that the QTDS can carry out multi-user communication through quantum channel, the QBER can also reach the reliability requirement of communication, and the protocol of QTDMC has high practicability and transplantable. The scheme of QTDS may play an important role in the establishment of quantum communication in a large scale in the future.
Keywords: 03.67.Hk      03.65.Ud      84.40.Ua     
Received: 07 June 2010      Published: 23 November 2010
PACS:  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  84.40.Ua (Telecommunications: signal transmission and processing; communication satellites)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/12/120303       OR      https://cpl.iphy.ac.cn/Y2010/V27/I12/120303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Xiao-Hui
PEI Chang-Xing
NIE Min
[1] Bennett C H et al 1993 Phys. Rev. Lett. 70 1895
[2] Chen M F et al 2007 Acta Photon. Sin. 36 950 (in Chinese)
[3] Cao W C et al 2006 Chin. Sci. G 36 375 (in Chinese)
[4] Zhu C H, Pei C X et al 2006 J. Xidian University 33 839 (in Chinese)
[5] Tao Y, Pan W and Luo B 2007 Acta Sin. Quantum Opt. 4 5 (in Chinese)
[6] Gobby C et al 2004 Appl. Phys. Lett. 84 3762
[7] Xian M J, Ji G R et al 2010 Nature Photonics 4 376
[8] Bennett C H and Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (Bangalore, India) p 175
[9] Tao Y, Pan W et al 2008 J. Electron. Information Technol. 30 2588
[10] Li Y F, Chen J G et al 2004 Laser J. 25 43 (in Chinese)
[11] Xiang S H and Song K H 2006 Acta. Phys. Sin. 55 529 (in Chinese)
[12] Artur S, Regina B H et al 2009 Phys. Rev. A 80 062310
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 120303
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 120303
[3] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 120303
[4] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 120303
[5] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 120303
[6] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 120303
[7] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 120303
[8] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 120303
[9] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 120303
[10] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 120303
[11] ZHANG Ai-Ping**, QIANG Wen-Chao, LING Ya-Wen, XIN Hong, YANG Yong-Ming . Geometric Phase for a Qutrit-Qubit Mixed-Spin System[J]. Chin. Phys. Lett., 2011, 28(8): 120303
[12] Abbass Sabour, Mojtaba Jafarpour** . A Probability Measure for Entanglement of Pure Two-Qubit Systems and a Useful Interpretation for Concurrence[J]. Chin. Phys. Lett., 2011, 28(7): 120303
[13] ZHANG Peng**, LI Chao, . Feasibility of Double-Click Attack on a Passive Detection Quantum Key Distribution System[J]. Chin. Phys. Lett., 2011, 28(7): 120303
[14] YAN Hui, **, ZHU Shi-Liang, DU Sheng-Wang . Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons[J]. Chin. Phys. Lett., 2011, 28(7): 120303
[15] WANG Xiao-Bo, WANG Jing-Jing, HE Bo, XIAO Lian-Tuan**, JIA Suo-Tang . Photon Counting Optical Time Domain Reflectometry Applying a Single Photon Modulation Technique[J]. Chin. Phys. Lett., 2011, 28(7): 120303
Viewed
Full text


Abstract