Chin. Phys. Lett.  2010, Vol. 27 Issue (10): 100501    DOI: 10.1088/0256-307X/27/10/100501
GENERAL |
Adaptive Consensus Problem of Leader-Follower Multi-Agent System
ZHANG Qing1,2, CHEN Shi-Hua1, GUO Wan-Li1
1College of Mathematics and Statistics, Wuhan University, Wuhan 430072
2College of Science, Wuhan University of Science and Technology, Wuhan 430065
Cite this article:   
ZHANG Qing, CHEN Shi-Hua, GUO Wan-Li 2010 Chin. Phys. Lett. 27 100501
Download: PDF(494KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We consider the adaptive consensus problem for leader-follower multi-agent systems with time delay coupling. Under the condition that the interconnection graph of the agents is directed and balanced, a neighbor-based consensus protocol with adaptive feedback gain is proposed for the follower agents to track the leader. The stability is performed based on the Lyapunov stability theorem. Some simulation examples are provided to show the efficiency of the control scheme.
Keywords: 05.45.-a     
Received: 26 April 2010      Published: 26 September 2010
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/10/100501       OR      https://cpl.iphy.ac.cn/Y2010/V27/I10/100501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Qing
CHEN Shi-Hua
GUO Wan-Li
[1] Cao Y U, Fukunaga A S and Kahng A 1995 IEEE RSJ IROS Conf. (Pittsburgh, PA 5-9 August 1995) vol 1 p 226
[2] Sugar T et al 2008 Experimental Robotics VI 250 15
[3] Fox D et al 2000 Autonomous Robots 8 325
[4] Cortes J et al 2004 IEEE Trans. Robotic. Automat. 20 243
[5] Cortes J et al 2005 SIAM J. Control. Optim. 44 1543
[6] Savkin A V 2004 IEEE Trans. Automatic Control 49 981
[7] Duan Z S et al 2009 IEEE Trans. Automatic Control 5 845
[8] Olfati-Sader R 2006 IEEE Trans. Automatic Control 51 401
[9] Jadbabaie A et al 2003 IEEE T Automa Contr 48 988
[10] Li Z K et al 2009 J. Systems Sci. Complexity 22 35
[11] Xiao F and Wang L 2008 IEEE Trans. Automatic Control 53 1804
[12] Olfati-Saber R and Murray R 2004 IEEE Trans. Automatic Control 49 1520
[13] Ren W 2007 Syst. Control. Lett. 56 474
[14] Li Z K, Duan Z S, Chen G R and Huang L 2010 IEEE Trans. Circuits and Systems I 57 213
[15] Hong Y G, Hu J P and Gao L X 2006 Automatica 42 1177
[16] Hu J P and Hong Y G 2007 Physica A 374 853
[17] Zhou J et al 2006 IEEE Trans. Automatic Control 51 652
[18] Li Z and Chen G 2004 Phys. Lett. A 324 166
[19] Wang L et al 2009 Int. J. Robust Nonlin. Control 19 495
[20] Boyd S, Ghaoui L E, Feron E and Balakrishnan V 1994 SIAM Studies Appl. Math. 15 (Philadelphia, PA: SIAM)
[21] Lin Z Y et al 2005 IEEE SIAM 50 121
[22] Hale J K and Lunel S M V 1993 Appl. Math. Sci. 99 (New York: Springer)
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 100501
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 100501
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 100501
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 100501
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 100501
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 100501
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 100501
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 100501
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 100501
[10] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 100501
[11] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 100501
[12] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 100501
[13] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 100501
[14] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 100501
[15] WANG Can-Jun** . Vibrational Resonance in an Overdamped System with a Sextic Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 100501
Viewed
Full text


Abstract