CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Melting of Single-Walled Silicon Carbide Nanotubes: Density Functional Molecular Dynamics Simulation |
WANG Sheng-Jie, ZHANG Chun-Lai, WANG Zhi-Guo |
Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054 |
|
Cite this article: |
WANG Sheng-Jie, ZHANG Chun-Lai, WANG Zhi-Guo 2010 Chin. Phys. Lett. 27 106101 |
|
|
Abstract Density functional molecular dynamics are used to study the melting behavior of single-walled SiC nanotubes. The melting of SiC nanotubes starts from the thermally activated Stone-Wales defects. The melting temperature is found to increase with the increasing diameter of nanotubes. The SiC nanotubes have a high melting temperature larger than 4000 K as the diameter larger than 1.0 nm, which indicates that the SiC nanotubes may be the best candidate of nanoscale electronic and optoelectronic devices under high temperatures.
|
Keywords:
61.46.-w
65.80.-g
|
|
Received: 09 July 2010
Published: 26 September 2010
|
|
PACS: |
61.46.-w
|
(Structure of nanoscale materials)
|
|
65.80.-g
|
(Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)
|
|
|
|
|
[1] Harris G L 1995 Properties of Silicon Carbide (London: INSPEC, Institution of Electrical Engineers) p 131
[2] Sun X H, Li C P, Wong W K, Wong N B, Lee C S, Lee S T and Teo B K 2002 J. Am. Chem. Soc. 124 14464
[3] Zhao M W, Xia Y Y, Li F, Zhang R Q and Lee S T 2005 Phys. Rev. B 71 085312
[4] Baierle R J, Piquini P, Neves L P and Miwa R H 2006 Phys. Rev. B 74 155425
[5] Gali A 2006 Phys. Rev. B 73 245415
[6] Gali A 2007 Phys. Rev. B 75 085416
[7] Wu I J and Guo G Y 2007 Phys. Rev. B 76 035343
[8] Shen H J 2007 J. Mater. Sci. 42 6382
[9] Zhang Y F and Huang H C 2008 Comput. Mater. Sci. 43 664
[10] Huang X P and Huai X L 2008 Chin. Phys. Lett. 25 2973
[11] Li J K and Tian X F 2010 Chin. Phys. Lett. 27 036501
[12] Yang B and Lai W S 2009 Chin. Phys. Lett. 26 066103
[13] Li D F, Xiao H Y, Xue S W, Yang L and Zu X T 2010 Chin. Phys. Lett. 27 046802
[14] Gao T G, Yi J M, Zhou Z Y and Hu X D 2008 Chin. Phys. Lett. 25 2989
[15] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
[16] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[17] Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P and Sánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745
[18] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993
[19] Zhang R Q, Zhang Q Z and Zhao M W 2004 Theor. Chem. Acc. 112 158
[20] MonkHorst H J and Park J D 1976 Phys. Rev. B 13 5188
[21] Goldstein A N, Echer C M and Alivisatos A P 1992 Science 256 1425
[22] Lai L, Guo J Y, Petrova V, Ramanath G and Allen L H 1996 Phys. Rev. Lett. 77 99
[23] Bachels T Guntherodt H J and Sckafer R 2000 Phys. Rev. Lett. 85 1250
[24] Zhao S J, Wang S, Cheng D Y and Ye H Q 2001 J. Phys. Chem. B 105 12857
[25] Wang Z G, Zu X T, Gao F and Weber W J 2006 J. Appl. Phys. 100 063503
[26] Wang Z G, Gao F, Li J B, Zu X T and Weber W J 2009 J. Appl. Phys. 106 084305
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|