Original Articles |
|
|
|
|
Terahertz Quantum Cascade Laser at 3.39THz |
CAO Jun-Cheng1;LI Hua1;HAN Ying-Jun1;TAN Zhi-Yong1; LU Jing-Tao1;LUO Hui2;LAFRAMBOISE Sylvain2;LIU Hui-Chun2 |
1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 2000502Institute for Microstructural Sciences, National Research Council, Ottawa K1A 0R6, Canada |
|
Cite this article: |
CAO Jun-Cheng, LI Hua, HAN Ying-Jun et al 2008 Chin. Phys. Lett. 25 953-956 |
|
|
Abstract We demonstrate the growth of terahertz quantum cascade laser (THz QCL) by gas source molecular beam epitaxy. X-ray diffraction and cross-sectional transmission electron microscopic measurements show the high crystalline quality of the THz QCL active region. From the cross-sectional transmission electron microscopy image, sharp interfaces are observed and the deduced cascade period thickness is consistent with the result of x-raydiffraction. The test device is lasing at 3.39THz and operating up to 100K in pulsed mode. At 10K, the maximum output power is greater than 1mW with a threshold current density of 738A/cm2.
|
Keywords:
42.55.Px. 81.15.-z
|
|
Received: 29 October 2007
Published: 27 February 2008
|
|
|
|
|
|
[1] Kohler R, Tredicucci A, Beltram F, Beere H, LinfieldE, Davies A, Ritchie D, Iotti R and Rossi F 2002 Nature 417 156 [2] Siegel P H 2002 IEEE Trans. Microwave TheoryTechnol. 50 910 [3] Capasso F, Paiella F R, Martini R, Colombelli R, Gmachl C,Myers T L, Taubman M S, Williams R M, Bethea C G, Unterrainer K,Hwang H Y, Sivco D L, Cho A Y, Sergent A M, Liu H C and Whittaker EA 2002 J. Quantum Electron. 38 511 [4] Cao J C 2003 Phys. Rev. Lett. 91 237401 [5] Darmo J, Tamosiunas V, Fasching G, Kroll J, Unterrainer K,Beck M, Giovannini M, Faist J, Kremser C and Debbage P 2004 Opt. Express 12 1879 [6] Faist J, Capasso F, Sivco D, Sirtori C, Hutchinson A L andCho A 1994 Science 264 553 [7] Rochat M, Ajili L, Willenberg H, Faist J, Beere H, DaviesG, Linfield E and Ritchie D 2002 Appl. Phys. Lett. 811381 [8] Kohler R, Tredicucci A, Beltram F, Beere H E, LinfieldE H, Davies A G, Ritchie D A, Dhillon S S and Sirtori C 2003 Appl. Phys. Lett. 82 1518 [9] Williams B S, Kumar S, Callebaut H, Hu Q and Reno J L 2003 Appl. Phys. Lett. 83 2124 [10] Williams B S, Kumar S, Callebaut H, Hu Q and Reno J L2003 Appl. Phys. Lett. 83 5142 [11] Williams B S, Kumar S, Hu Q and Reno J L 2004 Electron. Lett. 40 431 [12] Williams B S, Kumar S, Hu Q and Reno J L 2005 Opt.Express 13 3331 [13] Lu J T and Cao J C 2006 Appl. Phys. Lett. 88 061119 [14] Beere H E, Fowler J C, Alton J et al 2005 J. CrystalGrowth 278 756 [15] Huang G S, Liu T C, Yao H H, Kuo H C, Wang S C et al 2007 J. Crystal Growth 298 687 [16] Liu H C, Wachter M, Ban D, Wasilewski Z R, BuchananM, Aers G C, Cao J C, Feng S L, Williams B S and Hu Q 2005 Appl. Phys. Lett. 87 141102 [17] Alton J, Barbieri S, Beere H E, Fowler J, Linfield E Hand Ritchie D A 2004 Proc. SPIE 5354 129 [18] Ban D, W?chter M, Liu H C, Wasilewski Z R, Buchanan M andAers G C 2006 J. Vac. Sci. Technol. A 24 778 [19] Walther C, Scalari G, Fasit J, Beere H and Ritchie D 2006 Appl. Phys. Lett. 89 231121 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|